Правило сложения скоростей

Правило сложения скоростей

  1. Если человек идёт по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда идёт по направлению движения поезда, и со скоростью 50 — 5 = 45 километров в час, когда он идёт в обратном направлении.

В XIX веке классическая механика столкнулась с проблемой распространение этого правила сложения скоростей на оптические (электромагнитные) процессы. По существу произошёл конфликт между двумя идеями классической механики, перенесёнными в новую область электромагнитных процессов.

Вторая идея — принцип относительности. Находясь на корабле, движущимся равномерно и прямолинейно, нельзя обнаружить его движение какими-то внутренними механическими эффектами. Распространяется ли этот принцип на оптические эффекты? Нельзя ли обнаружить абсолютное движение системы по вызванным этим движением оптическим или, что то же самое электродинамическими эффектами? Интуиция (довольно явным образом связанная с классическим принципом относительности) говорит, что абсолютное движение нельзя обнаружить какими бы то ни было наблюдениями. Но если свет распространяется с определённой скоростью относительно каждой из движущихся инерциальных систем, то эта скорость изменится при переходе от одной системы к другой. Это вытекает из классического правила сложения скоростей. Говоря математическим языком, величина скорости света не будет инвариантна относительно галлилеевых преобразованиям. Это нарушает принцип относительности, вернее, не позволяет распространить принцип относительности на оптические процессы. Таким образом электродинамика разрушила связь двух, казалось бы, очевидных положений классической физики — правила сложения скоростей и принципа относительности. Более того, эти два положения применительно к электродинамике оказались несовместимыми.

Литература

  • Б. Г. Кузнецов Эйнштейн. Жизнь, смерть, бессмертие. — М .: Наука, 1972.
  • Четаев Н. Г. Теоретическая механика. — М .: Наука, 1987.
  • Смотреть что такое «Правило сложения скоростей» в других словарях:

    Сложение скоростей — При рассмотрении сложного движения (то есть когда точка или тело движется в одной системе отсчёта, а она движется относительно другой) возникает вопрос о связи скоростей в 2 системах отсчёта. Содержание 1 Классическая механика 1.1 Примеры … Википедия

    Механика — [от греч. mechanike (téchne) наука о машинах, искусство построения машин], наука о механическом движении материальных тел и происходящих при этом взаимодействиях между телами. Под механическим движением понимают изменение с течением… … Большая советская энциклопедия

    ВЕКТОР — В физике и математике вектор это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент,… … Энциклопедия Кольера

    Зоммерфельд, Арнольд — Арнольд Зоммерфельд Arnold Sommerfeld Зоммерфельд в … Википедия

    ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ — физическая теория, рассматривающая пространственно временные свойства физич. процессов. Эти свойства являются общими для всех физич. процессов, поэтому их часто наз. просто свойствами пространства времени. Свойства пространства времени зависят от … Математическая энциклопедия

    Правило сложения скоростей

    Классическая механика

  • Абсолютная скорость мухи, ползущей по радиусу вращающейся граммофонной пластинки, равна сумме скорости её движения относительно пластинки и той скорости, с которой её переносит пластинка за счёт своего вращения.
  • Релятивистская механика

    Классическое правило сложения скоростей соответствует преобразованию координат от одной системы осей к другой системе, движущиеся относительно первой без ускорения. Если при таком преобразовании мы сохраняем понятие одновременности, то есть сможем считать одновременными два события не только при их регистрации в одной системе координат, но и во всякой другой инерциальной системе, то преобразования называются галилеевыми. Кроме того, при галилеевых преобразованиях пространственное расстояние между двумя точками — разница между их координатами в одной инерциальной системе осчёта — всегда равно их расстоянию в другой инерциальной системе.

    Теория относительности даёт ответ на этот вопрос. Она расширяет понятие принципа относительности, распространяя его и на оптические процессы. Правило сложение скоростей при этом не отменяется совсем, а лишь уточняется для больших скоростей с помощью преобразования Лоренца:

    Можно заметить, что в случае, когда , преобразования Лоренца переходят в преобразования Галилея. То же самое происходит в случае, когда . Это говорит о том, что специальная теория относительности совпадает с механикой Ньютона либо в мире с бесконечной скоростью света, либо при скоростях, малых по сравнению со скоростью света. Последнее объясняет, каким образом сочетаются эти две теории — первая является уточнением второй.

    ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ — физическая теория, рассматривающая пространственно временные закономерности, справедливые для любых физ. процессов. Универсальность пространственно временных св в, рассматриваемых О. т., позволяет говорить о них просто как о .св вах пространства… … Физическая энциклопедия

    закон — а; м. 1. Нормативный акт, постановление высшего органа государственной власти, принятый в установленном порядке и имеющий юридическую силу. Кодекс законов о труде. З. о социальном обеспечении. З. о воинской обязанности. З. о рынке ценных бумаг.… … Энциклопедический словарь

    При рассмотрении сложного движения (то есть когда точка или тело движутся в одной системе отсчёта, а она движется относительно другой) возникает вопрос о связи скоростей в 2 системах отсчёта.

    Содержание

    Простым языком: Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости самой подвижной системы отсчета относительно неподвижной системы.

    Например, если рассмотреть пример с волнами на поверхности воды из предыдущего раздела и попробовать обобщить на электромагнитные волны, то получится противоречие с наблюдениями (см., например, опыт Майкельсона).

Wikimedia Foundation . 2010 .

Параллелограмм скоростей — геометрическое построение, выражающее закон сложения скоростей. Правило П. с. состоит в том, что при сложном движении (см. Относительное движение) абсолютная скорость точки представляется как диагональ параллелограмма, построенного на… … Большая советская энциклопедия

Специальная теория относительности — Почтовая марка с формулой E = mc2, посвящённая Альберту Эйнштейну, одному из создателей СТО. Специальная теор … Википедия

Пуанкаре, Анри — Анри Пуанкаре Henri Poincaré Дата рождения: 29 апреля 1854(1854 04 29) Место рождения: Нанси … Википедия

dic.academic.ru

Закон сложения скоростей в классической механике

Основная статья: Теорема о сложении скоростей

В классической механике абсолютная скорость точки равна векторной сумме её относительной и переносной скоростей:

Данное равенство представляет собой содержание утверждения теоремы о сложении скоростей.

Простым языком: Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости (относительно неподвижной системы) той точки подвижной системы отсчёта, в которой в данный момент времени находится тело.

1. Абсолютная скорость мухи, ползущей по радиусу вращающейся граммофонной пластинки, равна сумме скорости её движения относительно пластинки и той скорости, которую имеет точка пластинки под мухой относительно земли (то есть с которой её переносит пластинка за счёт своего вращения).

2. Если человек идёт по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда идёт по направлению движения поезда, и со скоростью 50 — 5 = 45 километров в час, когда он идёт в обратном направлении. Если человек в коридоре вагона движется относительно Земли со скоростью 55 километров в час, а поезд со скоростью 50 километров в час, то скорость человека относительно поезда 55 — 50 = 5 километров в час.

3. Если волны движутся относительно берега со скоростью 30 километров в час, и корабль также со скоростью 30 километров в час, то волны движутся относительно корабля со скоростью 30 — 30 = 0 километров в час, то есть относительно корабля они становятся неподвижными.

Из формулы для ускорений следует, что если движущаяся система отсчета движется относительно первой без ускорения, то есть , то ускорение тела относительно обеих систем отсчета одинаково.

Поскольку в Ньютоновской динамике из кинематических величин именно ускорение играет роль (см. второй закон Ньютона), то, если довольно естественно предположить, что силы зависят лишь от относительного положения и скоростей физических тел (а не их положения относительно абстрактного начала отсчета), окажется, что все уравнения механики запишутся одинаково в любой инерциальной системе отсчета — иначе говоря, законы механики не зависят от того, в какой из инерциальных систем отсчета мы их исследуем, не зависят от выбора в качестве рабочей какой-либо конкретной из инерциальных систем отсчета.

Также — поэтому — не зависит от такого выбора системы отсчета наблюдаемое движение тел (учитывая, конечно, начальные скорости). Это утверждение известно как принцип относительности Галилея, в отличие от Принципа относительности Эйнштейна

Иным образом этот принцип формулируется (следуя Галилею) так:

Если в двух замкнутых лабораториях, одна из которых равномерно прямолинейно (и поступательно) движется относительно другой, провести одинаковый механический эксперимент, результат будет одинаковым.

Требование (постулат) принципа относительности вместе с преобразованиями Галилея, представляющимися достаточно интуитивно очевидными, во многом следует форма и структура ньютоновской механики (и исторически также они оказали существенное влияние на ее формулировку). Говоря же несколько более формально, они накладывают на структуру механики ограничения, достаточно существенно влияющие на ее возможные формулировки, исторически весьма сильно способствовавшие ее оформлению.

Центра масс системы материальных точек

Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом:

где — радиус-вектор центра масс, — радиус-вектор i-й точки системы, — масса i-й точки.

Для случая непрерывного распределения масс:

где — суммарная масса системы, — объём, — плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.

Можно показать, что если система состоит не из материальных точек, а из протяжённых тел с массами , то радиус-вектор центра масс такой системы связан с радиус-векторами центров масс тел соотношением:

Иначе говоря, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.

Закон движения центра масс

Теорема о движении центра масс (центра инерции) системы — одна из общих теорем динамики, является следствием законов Ньютона. Утверждает, что ускорение центра масс механической системы не зависит от внутренних сил, действующих на тела системы, и связывает это ускорение с внешними силами, действующими на систему.

Объектами, о которых идёт речь в теореме, могут, в частности, являться следующие :

Импульс материальной точки и системы тел — это физическая векторная величина, которая является мерой действия силы, и зависит от времени действия силы.

Закон сохранения импульса (доказательство)

Закон сохранения импульса (Закон сохранения количества движения) утверждает, что векторная сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему, равна нулю.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса связан, согласно теореме Нётер, с одной из фундаментальных симметрий, — однородностью пространства.

Согласно второму закону Ньютона для системы из N частиц:

где импульс системы

а — равнодействующая всех сил, действующих на частицы системы

Здесь — равнодействующая сил, действующим на n-ю частицу со стороны m-ой, а — равнодействующая всех внешних сил, действующих k-ю частицу. Согласно третьему закону Ньютона, силы вида и будут равны по абсолютному значению и противоположны по направлению, то есть . Поэтому вторая сумма в правой части выражения (1) будет равна нулю, и получаем, что производная импульса системы по времени равна векторной сумме всех внешних сил, действующих на систему:

Внутренние силы исключаются третьим законом Ньютона.

Для систем из N частиц, в которых сумма всех внешних сил равна нулю

или для систем, на частицы которых не действуют внешние силы (для всех k от 1 до n), имеем

Как известно, если производная от некоторого выражения равна нулю, то это выражение есть постоянная величина относительно переменной дифференцирования, а значит:

(постоянный вектор).

То есть суммарный импульс системы из N частиц, где N любое целое число, есть величина постоянная. Для N = 1 получаем выражение для одной частицы.

Закон сохранения импульса выполняется не только для систем, на которые не действуют внешние силы, но и для систем, сумма всех внешних сил равна нулю. Равенство нулю всех внешних сил достаточно, но не необходимо для выполнения закона сохранения импульса.

Если проекция суммы внешних сил на какую-либо направление или координатную ось равна нулю, то в этом случае говорят о законе сохранения проекции импульса на данное направление или координатную ось.

Динамика вращательного движения твердого тела

Основной закон динамики МАТЕРИАЛЬНОЙ ТОЧКИ при вращательном движении можно сформулировать следующим образом:

«Произведение момента инерции на угловое ускорение равно результирующему моменту сил, действующих на материальную точку: «M = I·e.

Основной закон динамики вращательного движения ТВЕРДОГО ТЕЛА относительно закрепленной точки можно сформулировать следующим образом:

«Произведение момента инерции тела на его угловое ускорение равно суммарному моменту внешних сил, действующих на тело. Моменты сил и инерции берутся относительно оси (z), вокруг которой происходит вращение: «

Основные понятия: момент силы, момент инерции, момент импульса

Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент) — векторная физическая величина, равная векторному произведению радиус-вектора (проведённого от оси вращения к точке приложения силы — по определению) на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Понятия «вращающий» и «крутящий» моменты в общем случае не тождественны, так как в технике понятие «вращающий» момент рассматривается как внешнее усилие, прикладываемое к объекту, а «крутящий» — внутреннее усилие, возникающее в объекте под действием приложенных нагрузок (этим понятием оперируют в сопротивлении материалов).

Момент инерции — скалярная (в общем случае — тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения в Международной системе единиц (СИ): кг·м².

Момент импульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массывращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, не лежащей на линии движения, оно также обладает моментом импульса. Наибольшую, пожалуй, роль момент импульса играет при описании собственно вращательного движения. Однако крайне важен и для гораздо более широкого класса задач (особенно — если в задаче есть центральная или осевая симметрия, но не только в этих случаях).

Замечание: момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — псевдоскаляр.

Момент импульса замкнутой системы сохраняется.

studopedia.ru

Еще по теме:

  • Пенсия в чернобыльской зоне «Чернобыльская» пенсия: на каких условиях она назначается? Граждане России, пострадавшие вследствие аварии на ЧАЭС, всячески поддерживаются государством материально. Одной из таких социальных гарантий является пенсия «чернобыльцев» России – уйти на нее граждане России […]
  • Стаж водителя бензовоза Положена ли льготная пенсия водителю бензовоза Я работаю в сельском хозяйстве на бензовозе с 2002 г хотел узнать про льготы на пенсию в отделе кадров мне ответили что не положено так как я зимой работаю не каждый день. 1 ответ на вопрос от юристов 9111.ru Основным […]
  • Когда мужчинам можно выходить на пенсию Досрочный выход на пенсию, как оформить Согласно действующему законодательству, мужчины выходят на заслуженную пенсию в 60 лет, женщины - в 55 лет. Однако также предусмотрены случаи, когда при соблюдении строго регламентированных условий, можно начать получать пенсию […]
  • Детские пособия если родитель инвалид Родители инвалиды и льготы для их детей Законодательно такие дети приравнены ко взрослым с ограниченными возможностями. Им положены те же льготы от государства. Меры соц. поддержки, предусмотренные для детей-инвалидов, можно разделить на пять категорий: Трудовые […]
  • Ставка транспортного налога на снегоход Транспортный налог на мотоциклы, мотороллеры, квадроциклы и снегоходы Мотоцикл является самым демократичным видом транспорта. Во-первых – это всевозрастное средство передвижение, доступное и совсем юным водителям, и людям солидных лет. Во-вторых – широкий диапазон […]
  • Закон о воинской обязанности и военной службе изменения 2014 Федеральный закон от 2 апреля 2014 г. N 64-ФЗ "О внесении изменений в статьи 49 и 53 Федерального закона "О воинской обязанности и военной службе" Федеральный закон от 2 апреля 2014 г. N 64-ФЗ"О внесении изменений в статьи 49 и 53 Федерального закона "О воинской […]
  • Спирт штраф Торговцам спиртом с рук увеличат штрафы Законодательное собрание Пермского края внесло в Госдуму законопроект поправок к Кодексу административных правонарушений РФ (КоАП). Региональные депутаты предлагают увеличить суммы штрафов не только для юридических и […]
  • Александра емельяненко суд После оглашения приговора Емельяненко не сдержал эмоций Штраф в размере 50 тысяч рублей и 4,5 года колонии общего режима — такой приговор по делу Александра Емельяненко вынес Симоновский суд Москвы. Слушания проходили в закрытом режиме. Бойца смешанных единоборств […]

Комментарии запрещены.