Закон сохранения тела

Закон сохранения тела

Закон сохранения тела

3. Импульс тела. Закон сохранения импульса. Проявление закона сохранения импульса в природе и его использование в технике

Простые наблюдения и опыты доказывают, что покой и движение относительны, скорость тела зависит от выбора системы отсчета; по второму закону Ньютона независимо от того, находилось ли тело в покое или двигалось, изменение скорости его движения может происходить только под действием силы, т. е. в результате взаимодействия с другими телами. Однако существуют величины, которые могут сохраняться при взаимодействии тел. Такими величинами являются энергия и импульс.

Импульсом тела называют векторную физиче¬скую величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается . Импульс тела равен произведению массы тела на его скорость: . Направление вектора импульса р совпадает с направлением вектора скорости тела . Единица импульса — .

Для импульса системы тел выполняется закон сохранения, который справедлив только для замкнутых физических систем. В общем случае замкнутой называют систему, которая не обменивается энергией и массой с телами и полями, не входящими в нее. В механике замкнутой называют систему, на которую не действуют внешние силы или действие этих сил скомпенсировано. В этом случае , где — начальный импульс системы, а — конечный. В случае двух тел, входящих в систему, это выражение имеет вид , где — массы тел, а — скорости до взаимодействия, — скорости после взаимодействия (рис. 4). Эта формула и является математическим выражением закона сохранения импульса: импульс замкнутой физической системы сохраняется при любых взаимодействиях, происходящих внутри этой системы. Другими словами: в замкнутой физической системе геометрическая сумма импульсов тел до взаимодействия равна геометрической сумме импульсов этих тел после взаимодействия. В случае незамкнутой системы импульс тел системы не сохраняется. Однако если и системе существует направление, по которому внешние силы не действуют или их действие скомпенсировано, то сохраняется проекция импульса на это направление. Кроме того, если время взаимодействия мало (выстрел, взрыв, удар), то за это время даже в случае незамкнутой системы внешние силы незначительно изменяют импульсы взаимодействующих тел. Поэтому для практических расчетов в этом случае тоже можно применять закон сохранения импульса.

Экспериментальные исследования взаимодействий различных тел — от планет и звезд до атомов и элементарных частиц — показали, что в любой системе взаимодействующих тел при отсутствии действия со стороны других тел, не входящих в систему, или равенстве нулю суммы действующих сил геометрическая сумма импульсов тел действительно остается неизменной.

В механике закон сохранения импульса и законы Ньютона связаны между собой. Если на тело массой в течение времени действует сила и скорость его движения изменяется от до , то ускорение движения а тела равно . На основании второго закона Ньютона для силы можно записать , отсюда следует

. , отсюда .

Большая заслуга в развитии теории реактивного движения принадлежит К. Э. Циолковскому.

Он разработал теорию полета тела переменной массы (ракеты) в однородном поле тяготения и рассчитал запасы топлива, необходимые для преодоления силы земного притяжения; основы теории жид¬костного реактивного двигателя, а также элементы его конструкции; теорию многоступенчатых ракет, причем предложил два варианта: параллельный (несколько реактивных двигателей работают одновременно) и последовательный (реактивные двигатели работают друг за другом). К. Э. Циолковский строго научно доказал возможность полета в космос с помощью ракет с жидкостным реактивным двигателем, предложил специальные траектории посадки космических аппаратов на Землю, выдвинул идею создания межпланетных орбитальных станций и подробно рассмотрел условия жизни и жизнеобеспечения на них. Технические идеи Циолковского находят применение при создании современной ракетно-космической техники. Движение с помощью реактивной струи по закону сохранения импульса лежит в основе гидрореактивного двигателя. В основе движения многих морских моллюсков (осьминогов, медуз, кальмаров, каракатиц) также лежит реактивный принцип.

Читайте так же:  Анапа отдел защиты прав потребителя

1. Встречались абитуриенты, допускавшие грубую ошибку при объяснении принципа действия реактивного двигателя. Они утверждали, что движение реактивного самолета обусловлено взаимодействием выбрасываемых газов и воздуха: самолет действует на воздух, а воздух, согласно третьему закону Ньютона,— на самолет, в результате чего он движется. Это, конечно, неверно. ДЕйствительной причиной движения реактивного самолета является взаимодействие истекающих из сопла газов, которые образуются при сгорании топлива. За счет большого давления в камере сгорания эти газы приобретают некоторый импульс, поэтому, согласно закону сохранения импуьса, самолет получает такой же по модулю, но противоположный по направлению импульс. Так что самолет не отталкивается от воздуха. Напротив, атмосферный воздух является лишь помехой движению самолета.

2. Некоторый учащиеся не могут дать полный и правильный ответ на вопрос: в какиз случаях можно применять закон сохранения импульса. Полезно запомнить следующие критерии его применимости:

  1. система тел замкнута, т.е. на тела этой системы не действуют внешние силы;
  2. на тела системы действуют внешние силы, но их векторная сумма равна нулю
  3. система не замкнута, но сумма проекций всех внешних сил на какую-либо координатную ось равна нулю; тогда остается постоянной и сумма проекций импульсов всех тел системы на эту ось.
  4. время взаимодействия тел мало (например, время удара, выстрела, взрыва); в этом случае импульсаом внешних сил можно пренебречь и рассматривать систему как замкнутую.

fmclass.ru

Объединение учителей Санкт-Петербурга

Основные ссылки

Импульс тела. Закон сохранения импульса.

Импульс. Закон сохранения импульса.

При решении динамических задач необходимо знать какие силы действуют на тело, закон, позволяющий рассчитать конкретную силу. Цель: получить решение задачи механики исходя из начальных условий, не зная конкретного вида взаимодействия.

Законы Ньютона в полученной ранее форме не позволяют решать задачи на движение тела с переменной массой и при скоростях, сравнимых со скоростью света. Цель: получить записи законов Ньютона в форме, справедливой для этих условий.

Импульс силы Векторная физическая величина, являющаяся мерой действия силы за некоторый промежуток времени. — импульс силы за малый промежуток времени t.

Вектор импульса силы сонаправлен с вектором силы.

Импульс тела. (Количество движения) Векторная физическая величина, являющаяся мерой механического движения и равная произведению массы тела на его скорость.

Вектор импульса тела сонаправлен с вектором скорости тела.

Основное уравнение динамики

Из второго закона Ньютона:

Тогда получим: — второй закон Ньютона в импульсной форме

Импульс силы равен изменению импульса тела. Вектора импульса силы и изменения импульса тела сонаправлены.

Неупругий удар (шарик «прилипает» к стенке):

Абсолютно упругий удар (шарик отскакивает с прежней по величине скоростью):

Согласно 3 з-ну Ньютона: , следовательно:

Читайте так же:  Образец заявления о в детскую комнату милиции

Геометрическая (векторная) сумма импульсов взаимодействующих тел, составляющих замкнутую систему, остается неизменной.

Замкнутой называется система тел, взаимодействующих только друг с другом и не взаимодействующих с другими телами. Можно пользоваться и для незамкнутых систем, если сумма внешних сил, действующих на тела системы, равна нулю, или процесс происходит очень быстро, когда внешними воздействиями можно пренебречь (взрыв, атомные процессы).

В общем виде: т.к. система замкнутая, то , следовательно

Примеры применения закона сохранения импульса:

  1. Любые столкновения тел (биллиардных шаров, автомобилей, элементарных частиц и т.д.);
  2. Движение воздушного шарика при выходе из него воздуха;
  3. Разрывы тел, выстрелы и т.д.
  4. www.eduspb.com

    Понятие импульса тела. Закон сохранения импульса.

    Проделаем несколько несложных преобразований с формулами. По второму закону Ньютона силу можно найти: F=m*a. Ускорение находится следующим образом: a=v⁄t . Таким образом получаем: F=m*v/t.

    Определение импульса тела: формула

    Выходит, что сила характеризуется изменением произведения массы на скорость во времени. Если обозначить это произведение некой величиной, то мы получим изменение этой величины во времени как характеристику силы. Эту величину назвали импульсом тела. Импульс тела выражается формулой:

    p=m*v ,

    где p импульс тела, m масса, v скорость.

    Импульс это векторная величина, при этом его направление всегда совпадает с направлением скорости. Единицей импульса является килограмм на метр в секунду (1 кг*м/с).

    Что же такое импульс тела: как понять?

    Попробуем по-простому, «на пальцах» разобраться, что такое импульс тела. Если тело покоится, то его импульс равен нулю. Логично. Если скорость тела изменяется, то у тела появляется некий импульс, который характеризует величину приложенной к нему силы.

    Если воздействие на тело отсутствует, но оно движется с некоторой скоростью, то есть имеет некий импульс, то его импульс означает, какое воздействие способно оказать данное тело при взаимодействии с другим телом.

    В формулу импульса входит масса тела и его скорость. То есть чем большей массой и/или скоростью обладает тело, тем большее воздействие оно может оказать. Это понятно и из жизненного опыта.

    Чтобы сдвинуть тело небольшой массы, нужна небольшая сила. Чем больше масса тела, тем большее придется приложить усилие. То же самое касается и скорости, которую сообщают телу. В случае же воздействия самого тела на другое, импульс также показывает величину, с которой тело способно действовать на другие тела. Эта величина напрямую зависит от скорости и массы исходного тела.

    Импульс при взаимодействии тел

    Возникает еще один вопрос: что произойдет с импульсом тела при его взаимодействии с другим телом? Масса тела измениться не может, если оно остается целым, а вот скорость может измениться запросто. При этом скорость тела изменится в зависимости от его массы.

    В самом деле, понятно, что при столкновении тел с очень разными массами, скорость их изменится по-разному. Если летящий на большой скорости футбольный мяч врежется в неготового к этому человека, например зрителя, то зритель может упасть, то есть приобретет некоторую небольшую скорость, но точно не полетит как мячик.

    А все потому, что масса зрителя намного больше массы мяча. Но при этом сохранится неизменным общий импульс этих двух тел.

    Закон сохранения импульса: формула

    В этом и заключается закон сохранения импульса: при взаимодействии двух тел их общий импульс остается неизменным. Закон сохранения импульса действует только в замкнутой системе, то есть в такой системе, в которой нет воздействия внешних сил или их суммарное действие равно нулю.

    В реальности практически всегда на систему тел оказывается стороннее воздействие, но общий импульс, как и энергия, не пропадает в никуда и не возникает из ниоткуда, он распределяется между всеми участниками взаимодействия.

    Закон сохранения импульса для двух тел в виде формулы будет выглядеть следующим образом:

    (p_1′ ) +(p_2′ ) = (p_1 ) + (p_2 ),

    где левая часть уравнения это сумма импульсов тел после взаимодействия, а правая часть после взаимодействия. Уравнение говорит нам, что общий импульс (сумма импульсов) остается неизменнным.

    www.nado5.ru

    Школьная Энциклопедия

    Nav view search

    Login Form

    Закон сохранения импульса

    Подробности Категория: Механика Опубликовано 21.04.2014 14:29 Просмотров: 51176

    В классической механике существуют два закона сохранения: закон сохранения импульса и закон сохранения энергии.

    Импульс тела

    Впервые понятие импульса ввёл французский математик, физик, механик и философ Декарт, назвавший импульс количеством движения.

    С латинского «импульс» переводится как «толкать, двигать».

    Любое тело, которое движется, обладает импульсом.

    Представим себе тележку, стоящую неподвижно. Её импульс равен нулю. Но как только тележка начнёт двигаться, её импульс перестанет быть нулевым. Он начнёт изменяться, так как будет изменяться скорость.

    Импульс материальной точки, или количество движения, – векторная величина, равная произведению массы точки на её скорость. Направление вектора импульса точки совпадает с направлением вектора скорости.

    Если говорят о твёрдом физическом теле, то импульсом такого тела называют произведение массы этого тела на скорость центра масс.

    Как вычислить импульс тела? Можно представить, что тело состоит из множества материальных точек, или системы материальных точек.

    Если — импульс одной материальной точки, то импульс системы материальных точек

    ency.info

    Тема 3. «Законы сохранения в механике».

    Импульсом тела называется величина, равная произведению массы тела на его скорость.

    Изменение импульса тела равно импульсу силы.

    Закон сохранения импульса: Геометрическая сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых движениях и взаимодействиях тел системы.

    Работа постоянной силы равна произведению модулей векторов силы и перемещения на косинус угла между этими векторами.

    Кинетическая энергия равна половине произведения массы тела на квадрат его скорости.

    Кинетическая энергия – это физическая величина, характеризующая движущееся тело; изменение этой величины равно работе силы, приложенной к телу.

    Величина mgh — это потенциальная энергия тела, поднятого на высоту h над нулевым уровнем.

    Работа силы упругости равна изменению потенциальной энергии упругого деформированного тела ( пружины), взятому с противоположным знаком.

    Потенциальная энергия деформированного тела равна работе силы упругости.

    Закон сохранения энергии: Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения или силами упругости, остается неизменной при любых движениях тел системы.

    Мощностью называется величина, равная отношению совершенной работы к промежутку времени, за который она совершена:

    Коэффициентом полезного действия называется величина, равная отношению полезной работы ко всей совершенной работе.

    КПД показывает, насколько эффективно данная машина использует подводимую к ней энергию. Коэффициент полезного действия не может быть больше единицы. КПД можно записать в процентах:

    Пример. Тело массой 2 кг при скорости 9 м/с начинает двигаться по инерции по горизонтальной поверхности. Определите работу силы трения, совершаемую с начала этого движения до уменьшения начальной скорости втрое.

    Изменение полной механической энергии тела равно работе силы трения

    Так как ,то

    где Ек1, Ek2 — кинетические энергии тела в конце и начале движения.Поскольку

    www.yaklass.ru

    Читайте так же:  Штраф аптечка
Обсуждение закрыто.