Закон сохранения энергии определении

Закон сохранения энергии определении

Закон сохранения энергии определении

Энегрия — наиболее универсальная величина для описания физических явлений.
Энергия — максимальное количество работы, которое способно совершить тело.
Есть несколько видов энергии. Например, в механике:

Потенциальная энергия тяготения,
определяется высотой h.

— Потенциальная энергия упругой деформации,
определяется величиной деформации х.

— Кинетическая энергия — энергия движения тел,
определяется скоростью тела v.

Энергия может передаваться от одних тел к другим, а также превращаться из одного вида в другой.

— Полная механическая энергия.

Закон сохранения энергии: в замкнутой системе тел полная энергия не изменяется при любых взаимодействиях внутри этой системы тел. Закон накладывает ограничения на протекание процессов в природе. Природа не допускает появление энергии ниоткуда и исчезание в никуда. Возможно оказывается только так: сколько одно тело теряет энергии, столько другое приобретает; сколько убывает одного вида энергии, столько к другому виду прибавляется.
В механике для определения видов энергии необходимо обратить внимание на три величины: высоту подъема тела над Землей h, деформацию х, скорость тела v.

sverh-zadacha.ucoz.ru

I. Механика

Тестирование онлайн

Закон сохранения энергии

Полная механическая энергия замкнутой системы тел остается неизменной

Закон сохранения энергии можно представить в виде

Если между телами действуют силы трения, то закон сохранения энергии видоизменяется. Изменение полной механической энергии равно работе сил трения

Рассмотрим свободное падение тела с некоторой высоты h1. Тело еще не движется (допустим, мы его держим), скорость равна нулю, кинетическая энергия равна нулю. Потенциальная энергия максимальная, так как сейчас тело находится выше всего от земли, чем в состоянии 2 или 3.

В состоянии 2 тело обладает кинетической энергией (так как уже развило скорость), но при этом потенциальная энергия уменьшилась, так как h2 меньше h1. Часть потенциальной энергии перешло в кинетическую.

Состояние 3 — это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на земле).

Полные механические энергии равны между собой , если пренебрегать силой сопротивления воздуха. Например, максимальная потенциальная энергия в состоянии 1 равна максимальной кинетической энергии в состоянии 3.

А куда потом исчезает кинетическая энергия? Исчезает бесследно? Опыт показывает, что механическое движение никогда не исчезает бесследно и никогда оно не возникает само собой. Во время торможения тела произошло нагревание поверхностей. В результате действия сил трения кинетическая энергия не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

Главное запомнить

1) Суть закона сохранения энергии

Общая форма закона сохранения*

Общая форма закона сохранения и превращения энергии имеет вид

Изучая тепловые процессы, мы будем рассматривать формулу
При исследовании тепловых процессов не рассматривается изменение механической энергии, то есть

В механике процессы теплопередачи не принимают во внимание, то есть . Если рассматривается физическая система замкнутая, то , получим . А если в замкнутой системе действуют только консервативные силы, то и приходим к формулировке: полная механическая энергия замкнутой системы тел, в которой действуют только консервативные силы, сохраняется.

fizmat.by

Закон сохранения и превращение энергии. Формулировка и определение закона сохранения и превращения энергии

Закон сохранения и превращение энергии является одним из важнейших постулатов физики. Рассмотрим историю его появления, а также основные области применения.

Страницы истории

Для начала выясним, кто открыл закон сохранения и превращения энергии. В 1841 году английским физиком Джоулем и русским ученым Ленцем параллельно были проведены эксперименты, в результате которых ученым удалось на практике выяснить связь между механической работой и теплотой.

Многочисленные исследования, проводимые физиками в разных уголках нашей планеты, предопределили открытие закона сохранения и превращения энергии. В середине девятнадцатого века немецким ученым Майером была дана его формулировка. Ученый попробовал обобщить всю информацию об электричестве, механическом движении, магнетизме, физиологии человека, существовавшую в тот промежуток времени.

Примерно в этот же период аналогичные мысли были высказаны учеными в Дании, Англии, Германии.

Эксперименты с теплотой

Несмотря на многообразие идей, касающихся теплоты, полное представление о ней было дано только русским ученым Михаилом Васильевичем Ломоносовым. Современники не поддержали его идеи, считали, что теплота не связана с движением мельчайшим частиц, из которых состоит вещество.

Закон сохранения и превращения механической энергии, предложенный Ломоносовым, был поддержан только после того, как в ходе экспериментов Румфорду удалось доказать наличие движения частиц внутри вещества.

Для получения теплоты физик Дэви пытался плавить лед, осуществлял трение друг о друга двух кусков льда. Он выдвинул гипотезу, согласно которой теплота рассматривалась в качестве колебательного движения частиц материи.

Закон сохранения и превращение энергии по Майеру предполагал неизменность сил, вызывающих появление теплоты. Подобная идея была раскритикована другими учеными, которые напоминали о том, что сила связана со скоростью и массой, следовательно, ее значение не могло оставаться неизменной величиной.

Читайте так же:  Сумма возврат такс фри

В конце девятнадцатого века Майер обобщил свои идеи в брошюре и попытался разрешить актуальную проблему теплоты. Как использовался в то время закон сохранения и превращения энергии? В механике не было единого мнения относительно способов получения, превращения энергии, поэтому до конца девятнадцатого века этот вопрос оставался открытым.

Особенность закона

Закон сохранения и превращение энергии является одним из фундаментальных, позволяющих при определенных условиях измерять физические величины. Его называют первым началом термодинамики, основным объектом которого является сохранение этой величины в условиях изолированной системы.

Закон сохранения и превращения энергии устанавливает зависимость количества теплоты от разных факторов. В ходе экспериментальных исследований, проводимых Майером, Гельмгольцем, Джоулем, были выделены различные виды энергии: потенциальная, кинетическая. Совокупность этих видов была названа механической, химической, электрической, тепловой.

Закон сохранения и превращение энергии имел следующую формулировку: «Изменение кинетической энергии равно изменению потенциальной энергии».

Майер пришел к выводу, что все разновидности этой величины способны превращаться друг в друга в случае, если остается неизменным общее количество теплоты.

Математическое выражение

К примеру, в качестве количественного выражения закона, в химической промышленности выступает энергетический баланс.

Закон сохранения и превращения энергии устанавливает связь между величиной тепловой энергии, которая попадает в зону взаимодействия различных веществ, с тем ее количеством, которое уходит из данной зоны.

Переход одного вида энергии в другой не означает, что она исчезает. Нет, наблюдается лишь ее превращение в иную форму.

При этом наблюдается взаимосвязь: работа – энергия. Закон сохранения и превращения энергии предполагает постоянство этой величины (полное ее количество) при любых процессах, протекающих в изолированной системе. Это свидетельствует о том, что в процессе перехода одного вида в другой, соблюдается количественная эквивалентность. Для того чтобы дать количественную характеристику разных видов движения, в физике введена ядерная, химическая, электромагнитная, тепловая энергия.

Современная формулировка

Как читается закон сохранения и превращения энергии в наши дни? Классическая физика предлагает математическую запись данного постулата в виде обобщенного уравнения состояния термодинамической замкнутой системы:

Это уравнение показывает, что полная механическая энергия замкнутой системы определяется в виде суммы кинетической, потенциальной, внутренней энергий.

Закон сохранения и превращения энергии, формула которого была представлена выше, объясняет неизменность этой физической величины в замкнутой системы.

Основным недостатком математической записи является ее актуальность только для замкнутой термодинамической системы.

Незамкнутые системы

Если учитывать принцип приращений, вполне можно распространить закон сохранения энергии и на незамкнутые физические системы. Данный принцип рекомендует записывать математические уравнения, связанные с описанием состояния системы, не в абсолютных показателях, а в их числовых приращениях.

Чтобы в полной мере учитывались все формы энергии, предлагалось добавлять в классическое уравнение идеальной системы сумму приращений энергий, которые вызваны изменениями состояния анализируемой системы под воздействием различных форм поля.

В обобщенном варианте уравнение состояния имеет следующий вид:

dW = Σi Ui dqi + Σj Uj dqj

Именно это уравнение считается самым полным в современной физике. Именно оно стало основой закона сохранения и превращения энергии.

В науке нет исключений из данного закона, он управляет всеми природными явлениями. Именно на основании данного постулата можно выдвигать гипотезы о различных двигателях, включая и опровержения реальности разработки вечного механизма. Его можно применять во всех случаях, когда необходимо объяснять переходы одного вида энергии в другой.

Применение в механике

Как читается закон сохранения и превращения энергии в настоящее время? Его суть заключается в переходе одного вида этой величины в другой, но при этом ее общее значение остается неизменным. Те системы, в которых осуществляются механические процессы, именую консервативными. Такие системы являются идеализированными, то есть, в них не учитываются силы трения, иные виды сопротивлений, вызывающих рассеивание механической энергии.

В консервативной системе протекают только взаимные переходы потенциальной энергии в кинетическую.

Работа сил, которые действуют в подобной системе на тело, не связана с формой пути. Ее величина зависит от конечного и начального положения тела. В качестве примера сил такого рода в физике рассматривают силу тяжести. В консервативной системе величина работы силы на замкнутом участке равна нулю, а закон сохранения энергии будет справедлив в следующем виде: «В консервативной замкнутой системе сумма потенциальной и кинетической энергии тел, которые составляют системы, сохраняется неизменной».

К примеру, в случае свободного падения тела происходит переход потенциальной энергии в кинетическую форму, при этом суммарное значение этих видов не изменяется.

В заключение

Механическую работу можно рассматривать в качестве единственного способа взаимного перехода механического движения в иные формы материи.

Данный закон нашел применение в технике. После выключения двигателя автомобиля, происходит постепенная потеря кинетической энергии, последующая остановка транспортного средства. Исследования показали, что при этом наблюдается выделение определенного количества теплоты, следовательно, трущиеся тела нагреваются, увеличивая свою внутреннюю энергию. В случае трения либо любого сопротивления движению наблюдается переход механической энергии во внутреннюю величину, что свидетельствует о правильности закона.

Его современная формулировка имеет вид: «Энергия изолированной системы не исчезает в никуда, не появляется из ниоткуда. В любых явлениях, существующих внутри системы, наблюдается переход одного вида энергии в иной, передача от одного тела к другому, без количественного изменения».

После открытия данного закона физики не оставляют идею о создании вечного двигателя, в котором бы при замкнутом цикле не происходило изменения величины передаваемого системой тепла окружающему миру, в сравнении с получаемым извне теплом. Такая машина смогла бы стать неисчерпаемым источником тепла, способом решения энергетической проблемы человечества.

Читайте так же:  Налог при продажи автомобиля 2014

fb.ru

Закон сохранения энергии. Работа силы трения

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На данном уроке мы узнаем, в чём заключается закон сохранения энергии и что такое полная механическая энергия. Также мы рассмотрим работу ещё одной механической силы, которая называется сила трения скольжения, и обобщим знания обо всех трёх разновидностях сил в природе

В механике рассматриваются два вида энергии: кинетическая и потенциальная. Кинетическая энергия связана с движением тела, потенциальная – со взаимодействием тел или частей одного и того же тела. На этом уроке мы получим ответ на вопрос: какую практическую ценность несёт в себе понятие энергия?

Закон сохранения механической энергии

Тела, взаимодействующие только друг с другом, образуют замкнутую систему тел. Она может обладать кинетической и потенциальной энергией, которые могут изменяться с течением времени.

Если тела, составляющие замкнутую механическую систему, взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком.

,

где – потенциальная энергия в конечный момент времени; – потенциальная энергия в начальный момент времени.

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел.

,

где – кинетическая энергия в конечный момент времени; – кинетическая энергия в начальный момент времени.

Приравняем два выражения:

Из данной формулы видно, что кинетическая и потенциальная энергия системы изменяются синхронным образом, то есть увеличение одной приведёт к уменьшению другой, и эти изменения равны друг другу с точностью до знака (происходит превращение энергии из одной разновидности в другую). Следовательно, сумма потенциальной и кинетической энергии является величиной постоянной, называемой полной механической энергией.

Для примера, в системе тел, в которой действует сила тяжести (система «Земля – падающее тело» или «Земля – брошенное вверх тело») (см. Рис. 1), полная механическая энергия равна:

Рис. 1. Тела, взаимодействующие силами тяжести

Если между телами системы действует сила упругости (см. Рис. 2), то полная механическая энергия запишется так:

Рис. 2. Между телами системы действует сила упругости

Равенство значений полной механической энергии в начальный и конечный момент времени означает, что полная механическая энергия замкнутой системы тел не меняется с течением времени, то есть сохраняется. В этом состоит суть закона сохранения механической энергии:

Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения или силами упругости, остаётся неизменной при любых движениях тел системы.

Многие задачи с использованием этого закона решаются намного проще, чем при прямом решении уравнения движения, то есть при использовании второго закона Ньютона, так как в этом случае используются лишь конечный и начальный момент времени.

В современной теоретической физике доказывается, что закон сохранения механической энергии является следствием фундаментального свойства нашего мира, так называемой однородности времени. Это свойство заключается в том, что любые моменты времени равноправны между собой.

Работа силы трения

В земных условиях сила трения в той или иной мере проявляется при всех движениях тела. Эта сила возникает лишь при относительном движении соприкасающихся друг с другом тел и направлена противоположно скорости тела. Именно этим она отличается от других сил.

Если толкнуть тело, которое лежит на горизонтальной поверхности, то оно будет двигаться против силы трения. Кинетическая энергия при этом уменьшается (см. Рис. 3). Пройдя какое-то расстояние, тело остановится и обратно двигаться не будет. Следовательно, кинетическая энергия, уменьшаясь, в потенциальную не переходит.

Рис. 3. Движение тела, под действием силы трения

Можно сделать вывод: если тело движется под действием силы трения, даже в присутствии других сил, то закон сохранения полной механической энергии не выполняется. Полная механическая энергия уменьшается вместе с кинетической энергией.

Рассмотрим пример с падением тела (см. Рис. 4). Учтём, что тело падает не в пустоте, а в воздухе. При этом потенциальная энергия также уменьшается на mgh, как при падении в вакууме, но скорость тела при достижении земли будет меньше той скорости, которое приобрело бы тело в случае отсутствия воздуха, следовательно, меньше будет и кинетическая энергия тела. Таким образом, увеличение кинетической энергии не будет равно уменьшению потенциальной. Уменьшение полной механической энергии произошло из-за работы силы сопротивления, а сила сопротивления во многом аналогична силе трения.

Рис. 4. Падение тела в воздухе и вакууме

Обобщающие выводы относительно трёх основных разновидностей сил в природе

Силы тяжести и упругости

Работа силы тяжести и силы упругости равна взятому с обратным знаком изменению потенциальной энергии. Данная работа не зависит от формы траектории, а определяется только начальным и конечным положением тела, именно этот факт позволяет для этих сил ввести понятие потенциальной энергии, поэтому данные силы называют потенциальными или консервативными. Если в замкнутой системе действуют только такие силы, то полная механическая энергия такой системы сохраняется.

Силы трения

Работа силы трения зависит от формы траектории. Для этой силы работу нельзя выразить через изменение какой-то величины, которую можно назвать потенциальной энергией. Силы, для которых не имеет смысла вводить понятие потенциальной энергии, называются диссипативными.

Читайте так же:  До скольки можно шуметь в квартире по закону рф 2018 в омске

Трение двух тел друг о друга приводит к их нагреванию. Увеличение температуры приводит к увеличению внутренней энергии тела. Следовательно, при движении тела под действием силы трения кинетическая энергия переходит в его внутреннюю энергию, то есть происходит переход механической энергии в немеханические формы энергии. Измерения показывают: несмотря на несохранение механической энергии при наличии трения, сохраняется полная энергия, которая учитывает и немеханические формы, в частности внутреннюю энергию тел системы. Следовательно, закон сохранения энергии имеет фундаментальный характер, если под энергией понимать полную энергию тел системы, то есть сумму всех видов энергий.

Итоги урока

На этом уроке мы установили, что для замкнутой системы тел, в которой действуют только консервативные силы, выполняется закон сохранения механической энергии. Если в замкнутой системе действуют также и диссипативные силы, то закон сохранения механической энергии нарушается, но тем не менее остаётся справедливым закон сохранения полной энергии замкнутой системы тел.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. – М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10–11. – М.: Дрофа, 2006.
  3. Касьянов В.А. Физика. 10 кл.: Учебн. для общеобразоват. учеб. заведений. – М.: Дрофа, 2000.
  4. Домашнее задание

  5. Вопросы в конце параграфа 50 и 51 (стр. 130 и 132); – Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10 (см. список рекомендованной литературы) (Источник)
  6. Ка­мень мас­сой 1 кг бро­шен вер­ти­каль­но вверх с на­чаль­ной ско­ро­стью 4 м/с. На сколь­ко уве­ли­чит­ся по­тен­ци­аль­ная энер­гия камня от на­ча­ла дви­же­ния к тому вре­ме­ни, когда ско­рость камня умень­шит­ся до 2 м/с?
  7. Маль­чик столк­нул санки с вер­ши­ны горки. Вы­со­та горки – 10 м, у ее под­но­жия ско­рость санок рав­ня­лась 15 м/с. Тре­ние санок о снег пре­не­бре­жи­мо мало. Какой была ско­рость санок сразу после толч­ка?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  • Интернет-портал Its-physics.org (Источник).
  • Интернет-портал Sch119comp2.narod.ru (Источник).
  • Интернет-портал Fizportal.ru (Источник).
  • Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

    interneturok.ru

    1.20. Закон сохранения механической энергии

    Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком:

    По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел (см. §1.19):

    или

    Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

    Это утверждение выражает закон сохранения энергии в механических процессах . Он является следствием законов Ньютона. Сумму E = E k + E p называют полной механической энергией . Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

    Пример применения закона сохранения энергии – нахождение минимальной прочности легкой нерастяжимой нити, удерживающей тело массой m при его вращении в вертикальной плоскости (задача Х. Гюйгенса). Рис. 1.20.1 поясняет решение этой задачи.

    Закон сохранения энергии для тела в верхней и нижней точках траектории записывается в виде:

    Обратим внимание на то, что сила натяжения нити всегда перпендикулярна скорости тела; поэтому она не совершает работы.

    При минимальной скорости вращения натяжение нити в верхней точке равно нулю и, следовательно, центростремительное ускорение телу в верхней точке сообщается только силой тяжести:

    Из этих соотношений следует:

    Центростремительное ускорение в нижней точке создается силами и направленными в противоположные стороны:

    Отсюда следует, что при минимальной скорости тела в верхней точке натяжение нити в нижней точке будет по модулю равно

    Прочность нити должна, очевидно, превышать это значение.

    Очень важно отметить, что закон сохранения механической энергии позволил получить связь между координатами и скоростями тела в двух разных точках траектории без анализа закона движения тела во всех промежуточных точках. Применение закона сохранения механической энергии может в значительной степени упростить решение многих задач.

    В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

    Сила трения не является консервативной. Работа силы трения зависит от длины пути.

    Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется . Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

    При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую.

    Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии .

    Одним из следствий закона сохранения и превращения энергии является утверждение о невозможности создания «вечного двигателя» (perpetuum mobile) – машины, которая могла бы неопределенно долго совершать работу, не расходуя при этом энергии (рис. 1.20.2).

    История хранит немалое число проектов «вечного двигателя». В некоторых из них ошибки «изобретателя» очевидны, в других эти ошибки замаскированы сложной конструкцией прибора, и бывает очень непросто понять, почему эта машина не будет работать. Бесплодные попытки создания «вечного двигателя» продолжаются и в наше время. Все эти попытки обречены на неудачу, так как закон сохранения и превращения энергии «запрещает» получение работы без затраты энергии.

    physics.ru

    Обсуждение закрыто.