Закон исключенного третьего аристотель

Закон исключенного третьего аристотель

6.3. Закон исключенного третьего

Впервые этот закон сформулировал Аристотель, хотя он был известен задолго до него и в логических учениях Древнего Востока, и в школах риторики Античной Греции.

Начиная с Аристотеля существует традиция давать закону исключенного третьего разные интерпретации, наиболее важной из которых является, несомненно, логическая. Она требует, чтобы из двух противоречащих суждений одно было истинным, а другое – ложным. Другое истолкование, называемое онтологическим, переносит логический закон на реальный мир, т.е. постулирует например, что свойство должно либо принадлежать, либо не принадлежать предмету, или же объект либо существует в мире, либо не существует. Ясно, однако, что этот закон, как и другие логические законы, абстрагируется от всей сложности и противоречивости реального мира и поэтому не может быть полностью, без соответствующих уточнений перенесен на объективный мир, его свойства и отношения. Точно так же методологическое требование, чтобы в процессе исследования было установлено, является ли объект (система суждений, гипотез или теория) истинным либо ложным, представляет собой перенос логического принципа на область учения о методах познания и критериев их истинности. Иногда даже под закон исключенного третьего подводится психологическая база, но подобные истолкования закона не вытекают из самого закона, который является логически необходимой, общезначимой истиной, относящейся непосредственно к двум контрадикторным суждениям. Закон просто требует, чтобы из таких суждений одно было истинным, а другое ложным; никакой третьей возможности не допускается. Отсюда легко находится формула для символического выражения закона. Суждения (или высказывания) в ней должны отрицать друг друга, и кроме того, они должны быть связаны строгой (сильной) дизъюнкцией, словесно выражаемой грамматическими союзами «либо, либо», т.е. если мы обозначим одно суждение через Р, а его отрицание – ¬ Р, тогда формула будет такой:

Вопрос о применении закона исключенного третьего еще со времени Аристотеля вызывал споры. Сам философ считал его применимым лишь для характеристики настоящих и прошлых событий, так как человек может определить истинность и ложность только таких событий. Вопрос об истинности будущих событий остается неопределенным. По-видимому, Аристотель и его предшественники вывели этот закон из наблюдения свойств конечных множеств событий. Когда математики обратились к исследованию свойств бесконечных множеств, то вынуждены были признать, что если бесконечность рассматривается как неограниченный процесс построения каких-либо объектов, например, чисел натурального ряда 1, 2, 3. то к ним принцип исключенного третьего оказывается неприменимым. В самом деле, суждение «В данном бесконечном ряду не существует объекта со свойством Р, т.е. Р(х)» было бы истинным только тогда, когда существовала бы возможность проверить бесконечный ряд целиком. Но именно подобным образом рассуждают сторонники классической (или теоретико-множественной) математики, когда рассматривают бесконечное множество по аналогии с конечными множествами, т.е. как завершенное, актуальное множество. С такой точки зрения натуральный ряд чисел представляется как уже заданный, готовый, а не возникающий в процессе прибавления единицы к предшествующему числу.

Для чего понадобилась эта идеализация? Оказывается для того, чтобы сохранить все законы аристотелевской (классической) логики и для бесконечных множеств. Однако подобный упрощенный подход привел в дальнейшем к парадоксам теории множеств, в связи с чем противники классиков – интуиционисты и конструктивисты – отказались от применения закона исключенного третьего. На этой основе возникла особая – конструктивная логика, отличающаяся от классической тем, что в ней не используется закон исключенного третьего.

Трудности с применением данного закона возникли также в квантовой механике, изучающей законы движения микрочастиц материи, где потребовалось ввести закон исключенного четвертого.

Приведенные примеры из современной науки ясно показывают, что прежде чем применить закон исключенного третьего к конкретным областям научного знания или даже к повседневной практике, необходимо убедиться, подходит ли он для данного случая, не вносит ли путаницу и не приводит ли к ошибочным выводам.

Следовательно, важно разобраться, как соотносятся между собой законы противоречия и исключенного третьего, какую роль они играют в логическом анализе рассуждений в речи или тексте. Заметим, что принцип противоречия имеет более общий характер, ибо устанавливает, что два противоречащих суждения не могут быть одновременно истинными, но не указывает что одно из них должно быть истинным, а другое ложным. Поэтому он применяется и к контрарным, и контрадикторным суждениям. Как известно, общеутвердительные и общеотрицательные суждения являются контрарными, т.е. допускают существование суждений, занимающих промежуточное положение между ними. Например, суждения «все экстрасенсы приносят пользу людям» и «ни один экстрасенс не приносит пользу» предполагают существование частноутвердительного суждения «некоторые экстрасенсы приносят пользу людям». Итак, когда мы имеем дело с противоречием, то в результате его анализа всегда можно выделить некоторое суждение, характеризующее промежуточное состояние, степень свойства, признака и т.п. Другими словами, члены такого противоречия не только отрицают друг друга, но и предполагают существование третьей возможности.

Контрадикторные суждения исключают третью возможность: они допускают выбор только между двумя возможностями. Нередко подобные суждения представляются в виде определенной альтернативы. Альтернатива требует выбора между двумя контрадикторными суждениями: либо вы считаете истиной одно мнение (гипотезу или утверждение) либо другое, и ничего, кроме этих альтернатив не допускается. Такой подход характерен для постановки проблем в научном познании или решения вопросов в практической деятельности. В этих случаях рассуждают по принципу «либо – либо» и тем самым заставляют исследовать или решать либо одну проблему или задачу, либо другую. Но отсюда, конечно, отнюдь не следует, что с самого начала исследования или решения выбирается истинное направление или решение, а просто-напросто постулируется возможность выбора между двумя возможностями. Выбор может оказаться неверным и решение проблемы или задачи отрицательным, но такой отрицательный результат оказывается небесполезными, ибо в соответствии с требованием закона исключенного третьего правильное решение следует искать путем реализации второй возможности.

Косвенные доказательства, основанные на применении принципа исключенного третьего, как мы видели в предыдущих главах, также строятся по принципу альтернативы. Предполагая тезис ложным, рассуждая от противного, выводят из него следствия, которые противоречат истинным или доказанным утверждениям. Поскольку из двух взаимоисключающих суждений только одно должно быть истинным, то ложность предполагаемого тезиса отрицается и тем самым доказывается его истинность.

Таким образом, если принцип непротиворечия требует анализа возникшего противоречия и его устранения, то принцип исключенного третьего идет дальше, ибо устраняет возможность выбора какого-то третьего суждения, кроме тех суждений, которые являются членами данной альтернативы. Именно поэтому последний закон называют также принципом альтернативы, что отображается в логической структуре самого закона. Если в законе непротиворечия отрицается конъюнкция противоречащих суждений, то в законе исключенного третьего отвергается существование третьей возможности наряду с двумя альтернативными:

www.bibliotekar.ru

Закон исключенного третьего аристотель

§ 2. Закон исключенного третьего

Закон исключительного третьего, как и закон противоречия, устанавливает связь между противоречащими друг другу высказываниями. И опять-таки идея, выражаемая им, представляется поначалу простой и очевидной: из двух противоречащих высказываний одно является истинным.

В использовавшейся уже полусимволической форме: А или не-А, т.е. истинно высказывание А или истинно его отрицание, высказывание не-А.

Конкретными приложениями этого закона являются, к примеру, высказывания: «Аристотель умер в 322 г. до н.э. или он не умер в этом году», «Личинки мух имеют голову или не имеют ее».

Истинность отрицания равнозначна ложности утверждения. В силу этого закон исключенного третьего можно передать и так: каждое высказывание является истинным или ложным.

Само название закона выражает его смысл: дело обстоит так, как описывается в рассматриваемом высказывании, иди так, как говорит его отрицание, и никакой третьей возможности нет.

Рассказывают историю про одного владельца собаки, который очень гордился воспитанием своего любимца. На его команду: «Эй! Приди или не приходи!» — собака всегда либо приходила либо нет. Так что команда в любом случае оказывалась выполненной.

Человек говорит прозой или не говорит прозой, кто-то рыдает или не рыдает, собака выполняет команду или не выполняет и т.п. — других вариантов не существует. Мы можем не знать, противоречива некоторая конкретная теория или нет, но на основе закона исключенного третьего еще до начала исследования мы вправе заявить: она или непротиворечива, или противоречива.

Читайте так же:  Решения судов пермского края

Этот закон с иронией обыгрывается в художественной литературе. Причина иронии понятна: сказать «Нечто или есть, или его нет», значит, ровным счетом ничего не сказать. И смешно, если кто-то этого не знает.

В комедии Мольера «Мещанин во дворянстве» есть такой диалог:

Г-н Журден. . А теперь я должен открыть вам секрет. Я влюблен в одну великосветскую даму, и мне хотелось бы, чтобы вы помогли написать ей записочку, которую я собираюсь уронить к ее ногам.

Учитель философии. Конечно, вы хотите написать ей стихи?

Г-н Журден. Нет, нет, только не стихи.

Учитель философии. Вы предпочитаете прозу?

Г-н Ж у рд е н. Нет, я не хочу ни прозы, ни стихов.

Учитель философии. Так нельзя: или то, или. другое.

Г-н Журден. Почему?

Учитель философии. По той причине, сударь, что мы можем излагать свои мысли не иначе, как прозой или стихами.

Г-н Журден. Не иначе, как прозой или стихами?

Учитель философии. Не иначе, сударь. Все, что не проза, то стихи, а что не стихи, то проза.

В известной сказке Л.Кэрролла «Алиса в Зазеркалье» Белый Рыцарь намерен спеть Алисе «очень, очень красивую песню».

— Когда я ее пою, все рыдают. или. С

— Или что? — спросила Алиса, не понимая, почему Рыцарь вдруг остановился.

В сказке А.Н.Толстого «Золотой ключик, или Приключения Буратино» народный лекарь Богомол заключает после осмотра Буратино:

— Одно из двух: или пациент жив или он умер. Если он жив — он останется жив или не останется жив. Если он мертв — его можно оживить или нельзя оживить.

Оба закона — и закон противоречия и закон исключенного третьего — были известны еще до Аристотеля. Он первым дал, однако, их ясные формулировки, подчеркнул важность этих законов для понимания мышления и бытия и вместе с тем выразил определенные сомнения в универсальной приложимости второго из них.

«. Невозможно, — писал Аристотель, — чтобы одно и то же в одно и то же время было и не было присуще одному и тому же в одном и том же отношении (и все другое, что мы могли бы еще уточнить, пусть будет уточнено во избежание словесных затруднений) — это, конечно, самое достоверное из всех начал». Такова формулировка закона противоречия и одновременно предупреждение о необходимости сохранять одну и ту же точку зрения в высказывании и его отрицании «во избежание словесных затруднений». Здесь же Аристотель полемизирует с теми, кто сомневается в справедливости данного закона: «. не может кто бы то ни было считать одно и то же существующим и несуществующим, как это, по мнению некоторых, утверждает Гераклит».

О законе исключенного третьего: «. не может быть ничего промежуточного между двумя членами противоречия, а относительно чего-то одного необходимо что бы то ни было одно либо утверждать, либо отрицать».

От Аристотеля идет также живущая и в наши дни традиция давать закону противоречия, закону исключенного третьего, да и другим логическим законам, три разные интерпретации.

В одном случае закон противоречия истолковывается как принцип логики, говорящей о высказываниях и их истинности: из двух противоречащих друг другу высказываний только одно может быть истинным.

В другом случае этот же закон понимается как утверждение об устройстве самого мира: не может быть так, чтобы что-то одновременно существовало и не существовало.

В третьем случае этот закон звучит уже как истина психологии, касающаяся своеобразия нашего мышления: не удается так размышлять о какой-то вещи, чтобы она оказывалась такой и вместе с тем не такой.

Нередко полагают, что эти три варианта различаются между собой только формулировками. На самом деле это совершенно не так. Устройство мира и своеобразие человеческого мышления — темы эмпирического, опытного исследования. Получаемые с его помощью, положения являются эмпирическими истинами. Принципы же логики совершенно иначе связаны с опытом и представляют собой не эмпирические, а логически необходимые истины. В дальнейшем, когда речь пойдет об общей природе логических законов и логической необходимости, недопустимость подобного смешения логики, психологии и теории бытия станет яснее.

Аристотель сомневался в приложимости закона исключенного третьего к высказываниям о будущих событиях. В настоящий момент наступление некоторых из них еще не предопределено. Нет причины ни для того, чтобы они произошли, ни для того, чтобы они не случились. «Через сто лет в этот же день будет идти дождь», — это высказывание сейчас скорее всего ни истинно, ни ложно. Таким же является его отрицание. Ведь сейчас нет причины ни для того, чтобы через сто лет пошел дождь, ни для того, чтобы его через сто лет не было. Но закон исключенного третьего утверждает, что или само высказывание, или его отрицание истинно. Значит, заключает Аристотель, хотя и без особой уверенности, данный закон следует ограничить одними высказываниями о прошлом и настоящем и не прилагать его к высказываниям о будущем.

Гораздо позднее, уже в нашем веке, рассуждения Аристотеля о законе исключенного третьего натолкнули на мысль о возможности принципиально нового направления в логике. Но об этом поговорим позже.

В XIX в. Гегель весьма иронично отзывался о законе противоречия и законе исключенного третьего.

Последний он представлял, в частности, в такой форме: «Дух является зеленым или не является зеленым», и задавал «каверзный» вопрос: какое из этих двух утверждений истинно?

Ответ на этот вопрос не представляет, однако, труда. Ни одно из двух утверждений: «Дух зеленый» и «Дух не зеленый» не является истинным, поскольку оба они бессмысленные. Закон исключенного третьего приложим только к осмысленным высказываниям. Только они могут быть истинными или ложными. Бессмысленное же не истинно и не ложно.

Гегелевская критика логических законов опиралась, как это нередко бывает, на придание им того смысла, которого у них нет, и приписывание им тех функций, к которым они не имеют отношения. Случай с критикой закона исключенного третьего — один из примеров такого подхода.

Сделанные вскользь, разрозненные и недостаточно компетентные критические замечания Гегеля в адрес формальной логики получили, к сожалению, широкое хождение. В логике в конце XIX — начале XX вв. произошла научная революция, в корне изменившая лицо этой науки. Но даже огромные успехи, достигнутые логикой, не смогли окончательно искоренить тех ошибочных представлений о ней, у истоков которых стоял Гегель. Не случайно немецкий историк логики X. Шольц писал, что гегелевская критика формальной логики была злом настолько большим, что его и сейчас трудно переоценить.

Резкой, но хорошо обоснованной критике подверг закон исключенного третьего голландский математик Л.Брауэр. В начале этого века он опубликовал три статьи, в которых выразил сомнение в неограниченной приложимости законов логики и прежде всего закона исключенного третьего. Первая из этих статей не превышала трех страниц, вторая — четырех, а вместе они не занимали и семнадцати страниц. Но впечатление, произведенное ими, было чрез вычайно сильным. Брауэр был убежден, что логические законы не являются абсолютными истинами, не зависящими от того, к чему они прилагаются. Возражая против закона исключенного третьего, он настаивал на том, что между утверждением и его отрицанием имеется еще третья возможность, которую нельзя исключить. Она обнаруживает себя при рассуждениях о бесконечных множествах объектов.

Допустим, что утверждается существование объекта с определенным свойством. Если множество, в которое входит этот объект, конечно, то можно перебрать все объекты. Это позволит выяснить, какое из следующих двух утверждений истинно: «В данном множестве есть объект с указанным свойством» или же: «В этом множестве нет такого объекта». Закон исключенного третьего здесь справедлив.

Читайте так же:  Приказ от 29092014 г 664н

Но когда множество бесконечно, то объекты его невозможно перебрать. Если в процессе перебора будет найден объект с требуемым свойством, первое из указанных утверждений подтвердится. Но если найти этот объект не удастся, ни о первом, ни о втором из утверждений нельзя ничего сказать, поскольку перебор не проведен до конца. Закон исключенного третьего здесь не действует: ни утверждение о существовании объекта с заданным свойством, ни отрицание этого утверждения не являются истинными.

Ограничение Брауэром сферы действия этого закона существенно сужало круг тех способов рассуждения, которые применимы в математике. Это сразу же вызвало резкую оппозицию многих математиков, особенно старшего поколения. «Изъять из математики принцип исключенного третьего, — писал немецкий математик Д.Гильберт, — все равно что. запретить боксеру пользоваться кулаками».

Критика Брауэром закона исключенного третьего привела к созданию нового направления в логике — интуиционистской логики. В последней не принимается этот закон и отбрасываются все те способы рассуждения, которые с ним связаны. Среди них — доказательства путем приведения к противоречию, или абсурду.

Интересно отметить, что еще до Брауэра сомнения в универсальной приложимости закона исключенного третьего высказывал русский философ и логик Н.А. Васильев. Он ставил своей задачей построение такой системы логики, в которой была бы ограничена не только сфера действия этого закона, но и закона противоречия. По мысли Васильева, логика, ограниченная подобным образом, не способна действовать в мире обычных вещей, но она необходима для более глубокого дони-мания логического учения Аристотеля.

Современники не смогли в должной мере оценить казавшиеся им парадоксальными идеи Васильева. К тому же сам он склонен был обосновывать свои взгляды с помощью аргументов, не имеющих прямого отношения к логике и.правилам логической техники, а иногда и просто путано. Тем не менее, оглядываясь назад, можно сказать, что он оказался одним из предшественников интуиционистской логики.

www.vuzlib.su

Закон исключённого третьего

Закон исключённого третьего — это один из основных общелогических принципов, согласно которому в процессе рассуждения всякое суждение или истинно, или ложно. Данный закон устанавливает связь между противоречащими друг другу осмысленными высказываниями (в рассуждении, в тексте или теории): одно (и только одно) из них истинно, другое ложно. Относится к четырём так называемым основополагающим логическим законам — закону тождества, закону противоречия, закону исключённого третьего и закону достаточного основания (см. Законы логики), которые подразумевают наиболее общие принципы (или постулаты) теоретического мышления и используются при оперировании понятиями и суждениями, в умозаключениях, доказательствах и опровержениях, и поэтому присутствуют практически во всех логических системах.

Закон исключённого третьего подразумевает, что если истинно A, то не истинно — не-A, либо наоборот, неистинно A и истинно не-A. Здесь буква A обозначает произвольное высказывание. Символически закон выражается формулой:

Третьего не дано, как не дано ещё какого-либо B, которое претендовало бы на выражение истины. Таким образом, само название закона выражает его смысл: дело обстоит так, как говорится в рассматриваемом высказывании, или так, как говорится в его отрицании, и никакой третьей возможности нет.

Закон исключённого третьего непосредственно связан с законом противоречия (см. Закон противоречия), согласно которому два взаимно противоречащих высказывания не могут быть истинными в одно и то же время и в одном и том же отношении (то есть одно из них должно быть ложным). Оба эти закона были впервые сформулированы Аристотелем в его «Метафизике» (IV, 8); в применении к атрибутивным высказываниям вида «B есть C» они рассматривались также в его «Аналитиках». Впоследствии эти законы наряду с законом тождества («A есть A») были приняты схоластами в качестве основных законов логики. Оригинальная формулировка Аристотеля: «Оба утверждения A и не-A не могут быть одновременно ложны». Наряду с этим, в «Метафизике» встречается (не как закон, а как способ рассуждения) другая формулировка, в настоящее время более употребимая: «Одно из утверждений A или не-A должно быть истинным». Эта формулировка известна как сильный закон исключённого третьего и получила в схоластической логике название tertium non datur.

Аристотель указал также границы применимости tertium non datur, рассмотрев пример неопределённого высказывания: «Завтра будет морское сражение», которое сегодня не истинно и не ложно. Данный пример можно представить в следующем виде:

    Предположим, сегодня истинно, что завтра будет морское сражение. Из этого следует, что не может быть, чтобы завтра не было морского сражения. Следовательно, необходимо, чтобы завтра морское сражение произошло. Подобно этому тезису, если сегодня ложно, что завтра будет морское сражение, то необходимо, чтобы морское сражение завтра не произошло. Но высказывание о том, что завтра произойдёт морское сражение, сегодня истинно или ложно (логический принцип двузначности, в соответствии с которым всякое высказывание является либо истинным, либо ложным, то есть принимает одно из двух возможных истинностных значений — «истинно» и «ложно»). Принцип двузначности предлагает нам выбрать одну из этих двух альтернатив как верную, то есть или необходимо, чтобы морское сражение завтра произошло, или необходимо, чтобы оно завтра не произошло. В самом деле, если сегодня высказано «Завтра будет морское сражение или завтра не будет морского сражения», то это высказывание будет неопределённым, если неопределённы образующие его части. Но утверждение «Завтра будет морское сражение или неверно, что завтра будет морское сражение» будет истинно: если высказывание «Завтра будет морское сражение» неопределённо, то высказывание «Неверно, что завтра будет морское сражение» истинно.

Аристотель считал, что закон исключённого третьего следует ограничить высказываниями о прошлом и настоящем и не прилагать его к высказываниям о неопределённых будущих событиях, то есть к таким, наступление которых в настоящий момент ещё не предопределено, поскольку нет причины ни для того, чтобы они произошли, ни для того, чтобы они не случились.

От Аристотеля идёт традиция давать закону исключённого третьего три разные интерпретации:

  • Логическая интерпретация. Закон понимается как принцип логики о высказываниях и их истинности: или высказывание, или его отрицание должно быть истинным.
  • Онтологическая интерпретация. Закон понимается как утверждение об устройстве мира: всякий объект или реально существует, или не существует.
  • Методологическая интерпретация. Закон понимается как принцип методологии научного познания: исследование каждого объекта должно вестись до тех пор и быть настолько полным, чтобы относительно каждого утверждения об этом объекте можно было решить, истинно оно или нет.
  • Закон исключённого третьего содержит в себе следующие предписания:

    1. Устанавливается альтернативность A и не-A и предлагается сделать выбор между ними по истинностному признаку.
    2. Запрещается выбирать в качестве альтернативы ещё какие-либо суждения.
    3. Устанавливается отношение контрарности (противоположности) между альтернативами таким образом, что одна из них является отрицанием другой.
    4. Трактуется универсальный приём логического мышления, согласно которому противоположное истине есть ложь.
    5. На языке математической логики сильный закон исключённого третьего выражается формулой A ⋁ ¬A, которая часто подменяет его в современных математизированных работах и называется математическим законом исключённого третьего. Но последний не эквивалентен ни сильному закону исключённого третьего, ни аристотелеву закону. В частности, в алгебраической интерпретации со значениями в булевой алгебре выполнены все законы классической логики, но как A, так и ¬A могут быть неистинны. Сильный закон исключённого третьего математически означает полноту используемой теории, что практически недостижимо. Так, в случае рассуждений о бесконечных и неопределённых совокупностях объектов, об изменяющихся, текущих и тому подобных состояниях изучение объекта не всегда способно достичь такой полноты, чтобы на любой вопрос о нём удалось ответить однозначно «да» или «нет».

      Сильный закон исключённого третьего оказался тем критическими местом, вокруг которого развивались дискуссии в течение всего времени существования логики как науки. Стоики и эпикурейцы рассматривали логики, несовместимые с законом исключённого третьего (как правило, не замечая разницы между его сильной и формулировкой Аристотеля). Интуиционизм начинался с утверждения о недостоверности сильного закона исключённого третьего, но он опровергает его достаточно тонко, сохраняя слабый закон исключённого третьего и придавая ему точную математическую формулировку: ¬¬ (A ⋁ ¬A), не вводя дополнительных логических значений. Эту формулировку ввёл Л. Брауэр в рамках критики применимости законов классической логики в математике (1908). Впоследствии её назвали брауэровым законом исключённого третьего. Брауэр был убеждён, что логические законы не являются абсолютными истинами, не зависящими от того, к чему они прилагаются. Возражая против закона исключённого третьего, он настаивал на том, что кроме утверждения и его отрицания имеется ещё третья возможность, которую нельзя исключить: она обнаруживает себя при рассуждениях о бесконечных множествах объектов. Ограничение Брауэром сферы действия этого закона существенно сужало круг тех способов рассуждения, которые применимы в математике и это сразу же вызвало резкую оппозицию многих математиков. Первое формальное доказательство брауэрова закона дал В. И. Гливенко (1928). Критика Брауэром закона исключённого третьего положила начало новому направлению в формальной логике (см. Логика формальная) — интуиционистской логике. В ней не принимается данный закон и отбрасываются все те способы рассуждения, которые с ним связаны.

      В целом, закон исключённого третьего представляется теперь спорным законом логики, более того, в некоторых рассуждениях его следует считать ложным. Общая критика закона (в его сильной форме) сводится к следующим положениям. Он применим для рассмотрения терминов в фиксированной обстановке с фиксированной точки зрения. Он не подходит для меняющейся обстановки и субъективных понятий. Он не допустим даже для терминов, если исследователя интересует не просто доказательство, а построение. Тем не менее, во всех указанных случаях иногда его использование корректно и весьма эффективно, но требует дополнительных обоснований.

      gtmarket.ru

      Законы логики

      Три основных закона логики сформулированы Аристотелем:
      — закон тождества,
      — закон (запрета) противоречия,
      — закон исключенного третьего.

      А четвертый закон — достаточного основания — выдвинут немецким математиком и философом XVII—XVIII вв. Лейбницем.

      1. Закон тождества.
      Сущность закона: каждая мысль или понятие о предмете должны быть четкими и сохранять свою однозначность на протяжении всего рассуждения и вывода.

      Нарушением этого закона является подмена понятий (часто используется в адвокатской практике).

      В этом законе непосредственно проявляется природа самых фундаментальных свойств логической мысли — определенности и последовательности.

      Иначе этот закон можно выразить так: мысли о предметах, свойствах или отношениях должны оставаться неизменными по содержанию в процессе всего рассуждения о них.

      Причиной возникновения ошибок чаще всего является многозначность слов и, как следствие, нарушение закона тождества при рассуждении. Как, скажем, понимать такое предложение: «Партия фортепиано доставила большой коммерческий успех»? Идет ли здесь речь о блестящем исполнении и большом сборе благодаря нему или имеются в виду проданные за хорошую цену музыкальные инструменты?

      Неоднозначность выражений может возникать и из-за двусмысленных грамматических конструкций. Путаница, вызванная такого рода обстоятельствами, знакома каждому благодаря знаменитому «казнить нельзя помиловать». «Беспечность порождает самонадеянность». В нем нельзя понять, что имеется в виду под порождаемым, а что под порождающим. Совершенно аналогичны в этом отношении выражения вроде: «Взвод сменяет караул» или «Меньшинство подчиняет большинство». Остроумно использовал двусмысленность выражения А.П. Чехов, вложив в уста одного из персонажей сообщение: «Перед вами череп обезьяны очень редкой разновидности. Таких черепов у нас всего два, один — в Национальном музее, другой — у меня».

      Нельзя отождествлять различные мысли, нельзя тождественные мысли принимать за нетождественные. Результат применения — закон тождества обеспечивает определенность логического мышления.

      2. Закон противоречия
      Сущность закона: два несовместимых друг с другом суждения не могут быть одновременно истинными; по крайней мере одно из них обязательно ложно.

      Закон противоречия раскрывает те же самые свойства определенности и последовательности, но только выражает их в отрицательной форме. Или, говоря немного конкретнее, согласно этой норме мышления в рассуждениях не должно быть одновременных утверждений и отрицаний относительно чего бы то ни было. Поэтому закон этот следовало бы назвать законом запрета противоречия. «Невозможно, чтобы одно и то же в одно и то же время было и не было присуще одному и тому же в одном и том же отношении» (Аристотель. Соч. Т. 1. С. 125). Признавать какое-либо положение и тут же от него отказываться всегда означает путаницу, отсутствие ясных и точных представлений. И когда нам надо показать несостоятельность, недопустимость тех или иных рассуждений или взглядов, то прежде всего мы стремимся указать на наличие в них нелепых, несовместимых положений — противоречий.

      Может ли снаряд, пробивающий абсолютно все, пробить броню, которая абсолютно ничем не пробиваема?

      Для ответа на этот парадокс достаточно еще раз взглянуть на формулировку второго закона, чтобы получить правильное решение.

      При заданных условиях задача логически противоречива: нсепробивающий снаряд и неразрушимая броня не могут существовать одновременно.

      Еще один пример: так, тургеневский Рудин очень метко изобличает своего оппонента Пигасова в непоследовательности, когда гот делает воинствующе-нигилистические заявления насчет того, что никаких убеждений нет и быть не может, причем отстаивает) го свое пессимистическое мировоззрение горячо и убежденно.

      — Так вы говорите: никаких убеждений нет? — спрашивает
      его Рудин.
      — Нет и быть не может.
      — Это ваше убеждение?
      — Да.
      — Как же вы говорите, что их нет? Вот вам одно на первый
      случай.

      Утверждая что-либо о каком-либо объекте, мы не можем, не противореча себе, отрицать то же самое о том же самом объекте, взятом в то же самое время и в том же самом отношении. Второй закон обеспечивает непротиворечивость и последовательность мышления, способность фиксировать и исправлять всякого рода противоречия в своих и чужих рассуждениях,

      3. Закон исключенного третьего.
      Истинно либо суждение, либо его отрицание («третьего не дано»). Сущность закона: из двух противоречащих суждений если одно истинно, то другое ложно, а третьего не дано. Закон исключенного третьего применим к высказываниям противоречащим и не применим к высказывания противоположным.

      Когда два понятия противоположны друг другу, то это означает максимальную противоположность между ними, а не просто противоречие. Выражается это в двух обстоятельствах: какой-нибудь признак, присущий одному из понятий, во-первых, отсутствует у другого и, во-вторых, вместо этого признака у него имеется несовместимый с ним (черный — белый, сильный — слабый, утро — вечер). Когда же у другого понятия отмечается только отсутствие какого-либо признака и ничего не говорится о том, какой ему вместо него присущ, то тогда возникает отношение противоречия: «белый» и «небелый», «утро» и «неутро», «добрый» и «недобрый», «экспорт» и «неэкспорт».

      Применяя закон исключенного третьего, надо помнить, что он ничего не говорит о том, какое из двух противоречащих суждений является истинным. Закон указывает лишь на то, что истинно одно, и только одно из них, а другое обязательно ложно. Это значит, когда нам удалось установить значение истинности одного из двух противоречащих суждений, то тем самым определилось и значение истинности другого. Отдельно устанавливать его уже не надо, потому что оно однозначно задается значением истинности сопряженного с ним понятия. Но какое именно из них должно быть оценено так, а какое иначе — для этого требугся отдельное исследование.

      Нельзя уклоняться от признания истинным одного из двух противоречащих друг другу высказывай и искать нечто третье между ними. Посредством использования данного закона достигается однозначность логического мышления.

      Закон достаточного основания
      Сущность закона: всякая мысль может быть признана истиной только тогда, когда она имеет достаточное основание, нсякая мысль должна быть обоснована. Всякая мысль истинна или ложна не сама по себе, а в силу достаточного основания. Это значит: любое положение, прежде чем стать научной истиной, должно быть подтверждено аргументами, достаточными для признания его твердо и неопровержимо доказанным.

      Достаточным основанием какой-либо мысли может быть любая другая, уже проверенная и признанная истинной мысль, из которой вытекает истинность рассматриваемой мысли. Закон обеспечивает обоснованность мышления. Во всех случаях, когда мы утверждаем что-либо, мы обязаны доказать свою правоту, то есть, привести достаточные основания, подтверждающие истинность наших мыслей.

      psyera.ru

      Читайте так же:  Пример заявление на налоговый вычет при покупке квартиры

    Обсуждение закрыто.