Т закон сохранения массы

Т закон сохранения массы

Закон сохранения массы веществ.

Закон сохранения массы теоретически был описан в 1748 году, а экспериментально подтверждён в 1756 году русским ученым М.В. Ломоносовым. Ломоносов определил, что если сосуд с металлом взвесить до и после нагревания, не вскрывая его, то масса останется неизменной.

В 1789 году французский учёный Антуан Лавуазье подтвердил выводы Ломоносова.

Закон сохранения массы веществ формулируется так:

Масса веществ, вступивших в реакцию, равна массе продуктов реакции.

Атомно-молекулярное учение объясняет этот закон так: при химической реакции общее количество участвующих атомов не изменяется, а происходит лишь их перегруппировка. Так как число атомов до и после реакции не изменяется, то их общая масса тоже не изменяется.

Модель химической реакции.

На основе закона сохранения массы веществ проводят количественный химический анализ.

Приведём пример. Составим химическое уравнение реакции разложения воды:

Число атомов кислорода слева от стрелки, т.е. до реакции, меньше в два раза, чем справа, т.е. после реакции. Для уравнивания количества веществ до и после реакции, нужно поставить коэффициент 2 перед формулой воды в левой части уравнения:

Зная закон сохранения массы, можно сформулировать правила составления химических уравнений:

  1. Необходимо знать формулы веществ, вступивших в реакцию (реагентов) и формулы веществ, полученных в результате реакции (продукты реакции).
  2. Число атомов каждого элемента в левой части уравнения должно быть равно числу атомов этих же элементов в правой части уравнения. Для уравновешивания подбирают и расставляют перед формулами соответствующие коэффициенты.
  3. Левую и правую части уравнения нельзя менять местами.
  4. Нельзя переносить формулы веществ из одной части уравнения в другую.

www.calc.ru

Т закон сохранения массы

Владельцы сайта

  • Галина Пчёлкина
  • Обратная связь

    Урок №14. Закон сохранения массы вещества. Химические уравнения

    Закон сохранения массы веществ

    Проблемный вопрос: изменится ли масса реагирующих веществ по сравнению с массой продуктов реакции?

    Чтобы ответить на данный вопрос наблюдайте за следующими видео-экспериментами:

    Вывод: Масса веществ до и после реакции не изменилась.

    Формулировка закона сохранения массы: масса веществ, вступивших в реакцию, равна массе образовавшихся веществ.

    С точки зрения атомно-молекулярного учения этот закон объясняется тем, что при химических реакциях общее количество атомов не изменяется, а происходит лишь их перегруппировка.

    Закон сохранения массы веществ является основным законом химии, все расчеты по химическим реакциям производятся на его основе. Именно с открытием этого закона связывают возникновение современной химии как точной науки.

    Закон сохранения массы был теоретически открыт в 1748 году и экспериментально подтверждён в 1756 году русским ученым М.В. Ломоносовым.

    Французский учёный Антуан Лавуазье в 1789 году окончательно убедил учёный мир в универсальности этого закона. Как Ломоносов, так и Лавуазье пользовались в своих экспериментах очень точными весами. Они нагревали металлы (свинец, олово, и ртуть) в запаянных сосудах и взвешивали исходные вещества и продукты реакции.

    Закон сохранения массы веществ применяется при составлении уравнений химических реакций.

    Химическое уравнение – это условная запись химической реакции посредством химических формул и коэффициентов.

    В результате химического взаимодействия серы и железа получено вещество – сульфид железа ( II ) – оно отличается от исходной смеси. Ни железо, ни сера не могут быть визуально обнаружены в нем. Невозможно их разделить и с помощью магнита. Произошло химическое превращение.

    Исходные вещества, принимающие участие в химических реакциях называются реагентами.

    Новые вещества, образующиеся в результате химической реакции называются продуктами.

    Запишем протекающую реакцию в виде уравнения химической реакции:

    Алгоритм составления уравнения химической реакции

    Составим уравнение химической реакции взаимодействия фосфора и кислорода

    1. В левой части уравнения записываем химические формулы реагентов (веществ, вступающих в реакцию). Помните! Молекулы большинства простых газообразных веществ двухатомны – H 2 ; N 2 ; O 2 ; F 2 ; Cl 2 ; Br 2 ; I 2. Между реагентами ставим знак «+», а затем стрелку:

    2. В правой части (после стрелки) пишем химическую формулу продукта (вещества, образующегося при взаимодействии). Помните! Химические формулы необходимо составлять, используя валентности атомов химических элементов:

    3. Согласно закону сохранения массы веществ число атомов до и после реакции должно быть одинаковым. Это достигается путём расстановки коэффициентов перед химическими формулами реагентов и продуктов химической реакции.

    • Вначале уравнивают число атомов, которых в реагирующих веществах (продуктах) содержится больше.
    • В данном случае это атомы кислорода.
    • Находим наименьшее общее кратное чисел атомов кислорода в левой и правой частях уравнения. Наименьшее кратное для атомов натрия –10:

    sites.google.com

    ЗАКОН СОХРАНЕНИЯ МАССЫ

    Экологический энциклопедический словарь. — Кишинев: Главная редакция Молдавской советской энциклопедии . И.И. Дедю . 1989 .

    Смотреть что такое «ЗАКОН СОХРАНЕНИЯ МАССЫ» в других словарях:

    ЗАКОН СОХРАНЕНИЯ МАССЫ — важнейший закон химии, установленный в 1748 г. М. В. Ломоносовым, а позже и А. Л. Лавуазье. В соответствии с этим законом общая масса всех веществ, участвующих в хим. реакции, в ее начале равна их массе в конце, какие бы реакции ни происходили.… … Большая политехническая энциклопедия

    закон сохранения массы — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN lawof conservation of mass … Справочник технического переводчика

    Закон сохранения массы — Механика сплошных сред … Википедия

    закон сохранения массы — masės tvermės dėsnis statusas T sritis fizika atitikmenys: angl. mass conservation law vok. Masseerhaltungssatz, m; Massenerhaltungssatz, m rus. закон сохранения массы, m pranc. loi de conservation des masses, f … Fizikos terminų žodynas

    ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ И МАТЕРИИ — ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ И МАТЕРИИ, два тесно связанных между собой н очень близких по содержанию закона, лежащих в основании всего точного естествознания. Эти законы имеют чисто количественный характер и являются законами экспериментальными.… … Большая медицинская энциклопедия

    СОХРАНЕНИЯ МАССЫ ЗАКОН — общая масса веществ, вступающих в химическую реакцию, равна общей массе продуктов реакции. Открытый М. В. Ломоносовым (1748), в общем виде сформулирован А. Лавуазье (1789). Современная формулировка закона сохранения массы: сумма массы вещества… … Большой Энциклопедический словарь

    ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ — первый закон термодинамики, в формулировке его первооткрывателей Н. Майера и Г. Гельмгольца гласящий, что при всех изменениях, происходящих в изолированной системе, общая энергия системы остается постоянной. Другая формулировка: при всех… … Экологический словарь

    Закон сохранения вещества — Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия

    сохранения массы закон — общая масса веществ, вступающих в химическую реакцию, равна общей массе продуктов реакции. Открытый М. В. Ломоносовым (1748), в общем виде сформулирован А. Лавуазье (1789). Современная формулировка закона сохранения массы: сумма массы вещества… … Энциклопедический словарь

    Закон сохранения — Законы сохранения фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени. Некоторые из законов… … Википедия

    dic.academic.ru

    Закон сохранения массы

    Закон сохранения массы – один из фундаментальных законов естествознания. Невыполнение данного принципа могло бы привести к тому, что жизнь не Земле так бы никогда и не появилась (и даже не появилась бы сама Вселенная). Но окружающая нас Вселенная всё-таки существует и изобилует различными физико-химическими процессами, в основе которых и лежит тот самый закон сохранения массы (конечно же вместе с другими основополагающими законами физики и химии). На сегодняшний день вряд ли найдётся человек, который будет оспаривать справедливость рассматриваемого закона. Современному обывателю он покажется даже чересчур простым, годным для понимания чуть ли не в дошкольном возрасте. Но так было далеко не всегда. На протяжении тысячелетий мнения учёных относительно свойств массы разнились, зачастую противоречили друг другу. И сейчас не до конца познана природа этого фундаментального понятия физики. Но открытия последних трёх столетий значительно приблизили нас к пониманию истинного значения термина «масса» и раскрытию основных её свойств. Закон сохранения массы является постулатом прежде всего таких наук, как физика и химия. Именно здесь мы видим наиболее яркие его проявления, именно здесь во всей красе раскрывается его суть. Рассматриваемый принцип также находит применение и в биологии, географии, астрономии и некоторых других естественных науках. Что же касается наук гуманитарных, то нужно отметить влияние закона сохранения массы прежде всего на философию, т.к. он лежит в основе современного представления человека о бытии. Конечно, в рамках одной работы невозможно рассмотреть все точки зрения на проблему формулировки и применения закона сохранения массы. Здесь рассмотрен наиболее общий взгляд на данный закон, а также изложены те факты, достоверность которых на данный момент не вызывает сомнений.

    Масса и энергия

    Ньютон первым по-настоящему осознал, насколько загадочны в действительности масса и энергия в физике, и сделал первую попытку разобраться в этой проблеме. В 1687 году, со словами «однако положение не совсем безнадежно», он предложил свое понимание существа дела, и оно оставалось неоспоримым вплоть до 1905 года, до Эйнштейна. По Ньютону, смысл массы виден из открытого им самим закона движения тел. Если тело под действием некоторой силы приобретает некоторое ускорение, то его масса представляет собой отношение этой силы к этому ускорению. Предполагается, что все измерения проводятся в инерциальной системе отсчета, в которой (по ее определению) тела покоятся или движутся равномерно и прямолинейно в отсутствие действующих на них сил. При этом — согласно принципу относительности Галилея — законы природы одинаковы во всех инерциальных системах, так что и такое понимание массы справедливо во всех этих системах. Что же касается энергии, то она обязана движению тел, их скорости v. В механике это кинетическая энергия E, и она, конечно, связана с массой тела m по формуле E = 1/2 * m*v 2 . Но в сущности масса и энергия — вещи разные. Обе они подчиняются законам сохранения, но порознь: есть закон сохранения массы и отдельно закон сохранения энергии. Достойно восхищения, что Ньютон увидел глубокую связь открытых им законов движения с общими свойствами пространства и времени. Эти законы возможны лишь потому, что пространство и время абсолютны, то есть заданы раз и навсегда и существуют независимо от всего того, что происходит в мире.

    На самом деле пространство отнюдь не абсолютно, и это должно проявляться при движении со скоростями, приближающимися к скорости света. При этом размеры тел оказываются различными, когда их измеряют в разных системах отсчета. И время не абсолютно: что случается одновременно в одной системы отсчета, то оказывается не одновременным в другой системе. И только единое четырехмерное пространство-время имеет абсолютный смысл, будучи инвариантным, то есть одним и тем же во всех системах отсчета. Это стало ясно Эйнштейну в 1905 году, когда он дополнил принцип относительности Галилея утверждением о конечной скорости распространения всех взаимодействий в природе. Предельная скорость распространения взаимодействий равна скорости света в пустоте c, и она одинакова во всех инерциальных системах отсчета, будучи универсальной физической постоянной. Из новой концепции пространства-времени выросла релятивистская механика, заменившая механику Ньютона. Центральным теоретическим и главным практическим следствием механики Эйнштейна стало новое понимание массы и энергии физических тел и их систем. Ньютоновское определение массы как отношения силы к ускорению в ней уже не действует. Такое отношение, как оказывается, может быть различно для одного и того же тела в разных обстоятельствах. Пусть тело движется так, что его скорость меняется только по направлению, но не по величине. В этом случае сила, действующая на тело, направлена перпендикулярно скорости. Это один пример. А в другом — скорость меняется, наоборот, только по величине, но не по направлению, и сила направлена по скорости. Согласно новой механике, во втором случае отношение силы к ускорению больше, чем в первом. Если в обоих случаях скорость тела составляла, скажем, одну треть от скорости света, то разница будет приблизительно в 13%. Дело, конечно, не в конкретных цифрах; важнее то, что понятие массы в релятивистской физике стало принципиально иным. Оно оказалось богаче внутренним физическим содержанием и новыми глубинными связями. Это прежде всего связи между массой и энергией.

    Так выглядит эйнштейновское соотношение между энергией покоя и массой тела, самая знаменитая формула науки. Она означает, что даже в состоянии покоя тело обладает определенной энергией, которая целиком обязана его массе. (Заметим в скобках, что хотя формулы теории относительности оставались с самого начала одними и теми же, физики — Планк, Паули, Фейнман и др. — давали массе различные истолкования. Случалось, и сам Эйнштейн менял точку зрения, потом снова возвращался к старому и т.д. Из-за этого в литературе, особенно учебной и популярной, возникла досадная путаница, которая, надо сказать, продолжается и до сих пор. В популярной книге Л.Д. Ландау и Ю.Б. Румера «Что такое теория относительности», которая не раз издавалась, говорится о массе, зависящей от скорости тела, то есть разной в разных системах отсчета; утверждается, что «Результаты опытов полностью подтвердили вытекающую из принципа относительности зависимость массы от скорости». Но массы, зависящей от скорости, нет в книге Эйнштейна «Сущность теории относительности». В нашем изложении мы следуем этой классической книге и классическому учебнику Л.Д. Ландау и Е.М. Лифшица «Теория поля».)

    Самое важное состоит в том, что эйнштейновская формула раскрывает возможность взаимных превращений энергии и массы. Или, что в точности то же, возможность превращений энергии покоя в другие виды энергии. Поэтому теперь масса и энергия сохраняются не по-отдельности, а вместе: взамен двух по видимости разных законов сохранения ньютоновской физики в релятивистской физике действует один — объединенный закон сохранения массы и энергии. Первый пример превращений массы и энергии Эйнштейн дал в том же 1905 году. Он рассуждал об излучении телом электромагнитных волн, причем считалось, что волны уходили от тела симметрично в противоположных направлениях, так что тело могло оставаться в покое. Пусть волны унесли некоторую энергию L (таково было принятое у него обозначение). Тогда масса тела должна уменьшиться на величину этой энергии, деленной на квадрат скорости света. В таком виде первоначально и появилась знаменитая формула.

    Взаимное преобразование массы и энергии, описываемое формулой Эйнштейна, лежит в основе огромного разнообразия процессов в природе и технике. Если отталкиваться от примера, данного Эйнштейном, то можно говорить также и об увеличении массы тела, если оно не излучает, а, наоборот, поглощает пришедшие симметрично извне волны. Масса тела растет и в случае, когда его тем или иным способом нагревают: к массе присоединяется массовый эквивалент добавленной тепловой энергии, то есть эта энергия, деленная на квадрат скорости света. Так что, например, горячий утюг тяжелее холодного. Но самый впечатляющий пример — преобразование массы в энергию при ядерных реакциях. Об этом впервые заговорили через два десятилетия после создания теории относительности, а сейчас это стало самым многообещающим направлением в энергетике настоящего и будущего.

    Всем известно, что звезды светят за счет ядерных реакций; в недрах Солнца идет ядерная реакция синтеза гелия из водорода. Энергия выделяется и в ядерных реакциях распада, — например, распада урана при поглощении медленных нейтронов. Реакции обоих типов, синтеза и распада, используются в ядерном оружии. На реакциях деления работают атомные электростанции. Реакции ядерного синтеза могут стать самым эффективным (и, как полагают, безопасным) способом получения энергии, когда их удастся осуществлять в управляемом режиме. Горючее для термоядерных реакторов — воду — можно будет черпать в неограниченном количестве из мирового океана. Строительство и изучение действующих экспериментальных прототипов таких установок идет сейчас полным ходом. Ожидается, что самый крупный международный термоядерный реактор ТОКАМАК-ИТЭР будет запущен в 2018-2019 гг., а еще через 10 лет на его основе может быть построена первая термоядерная электростанция. Во всех случаях выделения энергии масса продуктов ядерной реакции меньше исходной массы вступающих в реакцию частиц. Разница превращается в кинетическую энергию продуктов реакции. Но как возникает эта разница масс?

    Дело в том, что масса каждого ядра определяется не только индивидуальными массами составляющих его частиц нуклонов, то есть протонов и нейтронов. Важно и взаимодействие нуклонов между собой внутри ядра. Протоны и нейтроны в ядре связаны друг с другом силами притяжения, и это ядерное притяжение гораздо сильнее ньютоновского взаимного тяготения. Силы, действующие внутри ядра, так и называются ядерными силами. Чтобы растащить частицы ядра друг от друга, освободить их от ядерного притяжения, требуется, очевидно, затратить определенную энергию. Но легко себе представить, что соединение тех же нуклонов в ядро должно сопровождаться отводом энергии из ядра. При слиянии частиц в ядро освобождается столько же энергии, сколько требуется для их освобождения из готового ядра. Образующееся ядро теряет энергию, а согласно формуле Эйнштейна, это означает и потерю массы. В результате из-за ядерных сил масса ядра оказывается меньше суммы масс того же числа свободных протонов и нейтронов. Так как полная энергия-масса сохраняется, энергетический эквивалент этого различия переходит в кинетическую энергию продуктов реакции. Приведем характерный пример. Ядро гелия состоит из двух протонов и двух нейтронов (имеется в виду самый распространенный изотоп гелий-4.) Масса этого ядра составляет 4,0038 в атомных единицах массы (1 а.е.м. — 1/12 часть массы атома углерода-12, или 1.66*10 -24 грамм). В тех же единицах масса свободного протона есть 1,00807, а масса свободного нейтрона 1,00888. Суммарная масса двух свободных протонов и двух свободных нейтронов — 4,0339 а.е.м. Отсюда видно, что масса ядра гелия меньше суммы масс четырех нуклонов на величину 0,0301 а.е.м. Этот недостаток массы называют дефектом массы. Из этих цифр видно, что дефект массы составляет чуть меньше одного процента исходной массы нуклонов. Но энергетический эквивалент этой величины огромен, — это может легко вообразить себе каждый, кто хоть раз видел кинокадры взрыва водородной бомбы.

    Предельный случай преобразования массы и энергии — полный переход всей массы в энергию. Это возможно, если частица сталкивается с античастицей, — например, электрон с позитроном. Частица и античастица при этом исчезают (аннигилируют), порождая фотоны. Так как фотон — безмассовая частица, суммарная масса частицы и античастицы целиком переходит в кинетическую энергию фотонов. Это реальный физический процесс, давно уже изученный не только теоретически, но и экспериментально, что особенно важно. В таких экспериментах формула Эйнштейна проверена и подтверждена со всей возможной точностью.

    Открытие ядерных источников энергии нередко сравнивают с покорением огня древним человеком. Согласно археологическим данным, добывать огонь научились в эпоху позднего палеолита, и это достижение, как считается, окончательно отделило человека от животного царства. Звездное небо и огонь — это то, что издавна волновало человека, занимало его воображение и ум. Свет звезд и свет огня имеют одну природу — это результат преобразования массы в энергию. О звездах мы уже говорили; скажем теперь об огне. Физическую суть огня раскрыла в действительности лишь теория относительности. Огонь — результат химической реакции горения. Как и в ядерной реакции, при горении сумма масс продуктов реакции меньше исходной массы горючего и окислителя (последним чаще всего служит кислород воздуха). Разность начальной и конечной масс превращается в кинетическую (тепловую) энергию продуктов реакции. Продукты реакции и раскаленные ими до высоких температур макроскопические частицы углерода создают пламя, излучая видимый глазом свет. В энергию огня переходит лишь очень малая часть массы горючего и кислорода. Дело в том, что в химических реакциях участвуют не ядра, а атомы и молекулы. Дефект массы в молекулах гораздо меньше, чем в ядрах. При объединении атомов в молекулу или при превращениях одних молекул в другие изменение массы оказывается в десятки и сотни миллионов раз меньше, чем в ядерных реакциях. Например, при горении метана в газовой горелке преобразуется в тепло лишь одна десятимиллиардная доля массы покоя газа. Когда в топке сжигается тонна угля, в энергию переходит около одной трехтысячной доли грамма угля и использованного для горения кислорода.

    В огне химических реакций происходит то же эйнштейновское преобразование массы в энергию, что и, например, в звездах. Любой взрыв, военный или технический, самая обычная тепловая электростанция, работающая на газе, нефти или угле, двигатели внутреннего сгорания в автомобилях — все это и многое другое существует и действует только потому, что в природе имеется возможность преобразования массы в энергию. Не будь этого, современная цивилизация была бы невозможна.

    Но и это еще не все. Сама жизнь на земле немыслима без преобразования массы в энергию. Этот процесс происходит в нас самих, просто когда мы дышим. При дыхании в организм поступает кислород воздуха, который идет на непрерывное окисление органических веществ (углерода в его соединениях).

    В результате этого «внутреннего горения» выделяется энергия. Все теплокровные животные вырабатывают себе тепло в такого рода химических реакциях и черпают из них энергию для повседневной активности. Эффективность этих процессов приблизительно та же, что и в упомянутом выше примере газовой горелки.

    Вернемся в заключение к фундаментальной физике. Свойство массы превращаться в энергию (и наоборот) не было известно в ньютоновской классической физике. Этот грандиозный резервуар энергии открыла в природе теория относительности. Выше мы постарались выяснить, что, почему и при каких условиях происходит с массой и энергией при их взаимных преобразованиях. Но хотелось бы по возможности наглядно понять, как именно все это происходит на самом глубинном уровне. Действительно, каким образом от протона или нейтрона отнимается какая-то часть их природной массы, когда нуклоны объединяются в сложное атомное ядро? Что за процессы разыгрываются внутри протона и между нуклонами под действием ядерных сил? Или при гораздо меньших энергиях, когда у атомов отбирается часть массы, пусть и совсем небольшая, при их соединении в молекулу? И вообще, откуда берется масса у элементарных частиц, составляющих все тела природы? Почему эти массы столь различны, и, например, свободный электрон примерно в две тысячи раз легче свободного протона?

    На эти вопросы нет ответа. Проблема физической природы массы еще далеко не исчерпана; со времен Ньютона она была и остается едва ли не самой острой в фундаментальной физике. Согласно одной из активно обсуждаемых в последние годы идей, элементарные частицы приобретают массы благодаря взаимодействию с некоторой особой элементарной частицей, имеющей нулевой спин. У этой гипотетической частицы уже имеется название — хиггс, или хиггсовский бозоне, по имени автора этой идеи; но ее существование пока не удается доказать в прямом лабораторном эксперименте. Возможно, ситуация прояснится в ближайшие несколько лет, когда начнутся эксперименты на ускорителе нового поколения — Большом андронном коллайдере в Европейском центре ядерных исследований. С этим могучим инструментом связывают сейчас основные надежды на новый решительный шаг в разгадке самых важных тайн природы.

    biofile.ru

    Создание количественных методов исследования явилось исключительно важным этапом развития современной научной химии. Результатом первых количественных исследований стало открытие закона сохранения массы.
    В 1748 — 1756 гг. русский ученый М.В. Ломоносов установил и экспериментально подтвердил этот закон, проводя опыты по обжигу свинца и других металлов в запаянной реторте.
    Независимо от Ломоносова этот закон был открыт и введен в химию французским химиком Лавуазье (1785 г.). Современная формулировка закона сохранения массы такова:

    масса реагентов равна массе продуктов реакции

    Таким образом, при протекании химической реакции общая масса участвующих веществ (реагентов и продуктов) остается неизменной. Закон сохранения массы находит свое объяснение в том, что при течении химической реакции происходит только перегруппировка атомов (при переходе реагентов в продукты), а число атомомв и масса каждого атома остаются постоянными. Если же число атомомв каждого элемента, а следовательно, их общая масса не изменяются, то и масса реагентов должна всегда быть равной массе продуктов.
    Масса веществ определяется взвешиванием, т.е. сравнением ее с известной массой разновесов. Масса — одна из основных физических характеристик веществ, единицей массы в Международной системе (СИ) является килограмм (кг). В химической лабораторной практике в основном используется дольные от килограмма единицы: грамм (1 г. = 1 · 10 -3 кг) и миллиграмм (1 мг = 1 · 10 -3 г. = 1 · 10 -6 кг).

    В начале XX века применялся термин «вес» вместо «масса» (его можно встретить в старых учебниках: молекулярный вес, атомный вес и др.) в настоящее время недопустим в химии, физике и технике, поскольку вес — это другая физическая величина, численно равная силе тяжести и измеряемая в единицах силы — ньютонах (в СИ ранее килограмм-сила). Масса тела не зависит от его местонахождения, а вес, как производная массы и ускорения свободного падения, определяется положением тела относительно земной поверхности. Масса тела имеет одно и то же значение и на Земле и на Луне, а вес того же тела на Луне, примерно в 7 раз меньше, чем на Земле. Вес тел измеряется на пружинных весах.

    techemy.com

    Читайте так же:  Состав преступления при краже

Обсуждение закрыто.