Правила округление натуральных чисел

Правила округление натуральных чисел

Округление натуральных чисел

Под округлением натурального числа понимают замену его таким ближайшим по значению числом, у которого одна или несколько последних цифр в его записи заменены нулями.

Правило округления:

Чтобы округлить натуральное число, нужно в записи числа выбрать разряд, до которого производится округление.

Цифра, записанная в выбранном разряде:

  • не меняется, если следующая за ней справа цифра — 0, 1, 2, 3 или 4;

Все цифры, стоящие справа от данного разряда, заменяются нулями.

Пример: 143 ≈ 140 (округление до десятков);
5671 ≈ 5700 (округление до сотен).

Если в разряде, до которого производится округление, стоит цифра 9 и необходимо ее увеличить на единицу, то в этом разряде записывается цифра 0, а цифра в соседнем старшем разряде (слева) увеличивается на 1.

Пример: 796 ≈ 800 (округление до десятков);
970 ≈ 1000 (округление до сотен).

Округление десятичных дробей

Чтобы округлить десятичную дробь, нужно в записи числа выбрать разряд, до которого производится округление. Цифра, записанная в данном разряде:

  • увеличивается на единицу, если следующая за ней справа цифра — 5,6,7,8 или 9.
  • Все цифры, стоящие справа от данного разряда, заменяются нулями. Если эти нули находятся в дробной части числа, то их не пишут.

    Пример: 143,64 ≈ 143,6 (округление до десятых);
    5,687 ≈ 5,69 (округление до сотых);
    27,945 ≈ 28 (округление до целых).

    Если в разряде, до которого производится округление, стоит цифра 9 и необходимо ее увеличить на единицу, то в этом разряде записывается цифра 0, а цифра в предыдущем разряде (слева) увеличивается на 1.

    Пример: 89,6 ≈ 90 (округление до десятков);
    0,097 ≈ 0,10 (округление до сотых).

    files.school-collection.edu.ru

    Округление чисел

    1) Правила округления натуральных чисел. Округление натуральных чисел производится до единиц какого-то разряда. Округлить натуральное число до единиц какого-либо разряда-это значит установить сколько единиц этого разряда содержится в данном числе. Например, мы хотим округлить число 237 456 до тысяч. Это значит узнать, сколько тысяч имеется в этом числе. Очевидно, что в нем имеется 237 тысяч. Как мы это узнали? Для этого мы все цифры данного числа до разряда тысяч, т.е. сотни, десятки и единицы, заменили нулями и получили число 237000,чтро короче можно записать так:237 тыс. Но можно, зная, что 1000=10 3 , записать это округленное число и так: 237*10 3 .

    Итак, 237 456 ? 237 тыс. или 237 456 ? 237*10 3 .

    Обратите внимание: здесь мы поставили не обычный знак равенства, а знак приближённого равенства (?).

    Почему именно такой знак? Да потому, что числа 237 456 и 237 тыс. не равны, второе число несколько меньше первого, а именно меньше на 456, следовательно, заменяя число 237 456 числом 237 тыс., мы тем самым допускаем ошибку, равную 456, ак это значит, что числа 237 456 и 237 тыс. лишь приближённо равны. Поэтому и ставится знак приближённого равенства. Заметим, что ошибка при округлении числа 237 456 до тысяч составила 456 единиц, что меньше половины одной тысячи. Поэтому, если нам нужно округлить до тысяч число 237 873, то более рассудно взять в качестве округлёного значения числа 237 873 возьмём 237 тыс., то допустим ошибку, равную 873, что больше половины тысячи, т.е. 500. Если же в качестве округлённого значения 238 тыс. , то ошибка составит всего 127, что значительно меньше половины тысяч из этих примеров можно вывести следующее общее правило округления натуральных чисел до единиц какого — либо разряда: заменить все цифры, стоящие правее данного разряда, нулями. Если первая слева цифра из заменяемых нулями меньше 5, то округление закончено и полученное округлённое число можно записать в сокращённом виде. Если же она равна или больше 5, то цифру разряда, до какого производилось округление, заменяем на единицу большей.

    anastasi-shherbakova.narod.ru

    Округление натуральных чисел.

    Округление мы часто используем в повседневной жизни. Если расстояние от дома до школы будет 503 метра. Мы можем сказать, округлив значение, что расстояние от дома до школы 500 метров. То есть мы приблизили число 503 к более легко воспринимающемуся числу 500. Например, булка хлеба весит 498 грамм, то можно сказать округлив результат, что булка хлеба весит 500 грамм.

    Округление – это приближение числа к более “легкому” числу для восприятия человека.

    В итоге округления получается приближенное число. Округление обозначается символом ≈, такой символ читается “приближённо равно”.

    Можно записать 503≈500 или 498≈500.

    Читается такая запись, как “пятьсот три приближенно равно пятистам” или “четыреста девяносто восемь приближенно равно пятистам”.

    Разберем еще пример:

    4 4 71≈4000 4 5 71≈5000

    4 3 71≈4000 4 6 71≈5000

    4 2 71≈4000 4 7 71≈5000

    4 1 71≈4000 4 8 71≈5000

    4 0 71≈4000 4 9 71≈5000

    В данном примере было произведено округление чисел до разряда тысяч. Если посмотреть закономерность округления, то увидим, что в одном случае числа округляются в меньшую сторону, а в другом – в большую. После округления все остальные числа после разряда тысяч заменили на нули.

    Правила округления чисел:

    1) Если округляемая цифра равна 0, 1, 2, 3, 4, то цифра разряда до которого идет округление не меняется, а остальные числа заменяются нулями.

    2) Если округляемая цифра равна 5, 6, 7, 8, 9, то цифра разряда до которого идет округление становиться на 1 больше, а остальные числа заменяются нулями.

    1) Выполните округление до разряда десятков числа 364.

    Разряд десятков в данном примере это число 6. После шестерки стоит число 4. По правилу округления цифра 4 разряд десятков не меняет. Записываем вместо 4 нуль. Получаем:

    2) Выполните округление до разряда сотен числа 4 781.

    Разряд сотен в данном примере это число 7. После семерки стоит цифра 8, которая влияет на то измениться ли разряд сотен или нет. По правилу округления цифра 8 увеличивает разряд сотен на 1, а остальные цифры заменяем нулями. Получаем:

    3) Выполните округление до разряда тысяч числа 215 936.

    Разряд тысяч в данном примере это число 5. После пятерки стоит цифра 9, которая влияет на то измениться ли разряд тысяч или нет. По правилу округления цифра 9 увеличивает разряд тысяч на 1, а остальные цифры заменяются нулями. Получаем:

    21 5 9 36≈21 6 000

    4) Выполните округление до разряда десятков тысяч числа 1 302 894.

    Разряд тысяч в данном примере это число 0. После нуля стоит цифра 2, которая влияет на то измениться ли разряд десятков тысяч или нет. По правилу округления цифра 2 разряд десятков тысяч не меняет, заменяем на нуль этот разряд и все разряды младшие разряды. Получаем:

    13 0 2 894≈13 0 0000

    Если точное значение числа неважно, то значение числа округляют и можно выполнять вычислительные операции с приближенными значениями. Результат вычисления называют прикидкой результата действий.

    Например: 598⋅23≈600⋅20≈12000 сравним с 598⋅23=13754

    Прикидкой результата действий пользуются для того, чтобы быстро посчитать ответ.

    Примеры на задания по теме округление:

    Пример №1:
    Определите до какого разряда сделано округление:
    а) 3457987≈3500000 б)4573426≈4573000 в)16784≈17000
    Вспомним какие бывают разряды на числе 3457987.

    7 – разряд единиц,

    8 – разряд десятков,

    9 – разряд сотен,

    7 – разряд тысяч,

    5 – разряд десятков тысяч,

    4 – разряд сотен тысяч,
    3 – разряд миллионов.
    Ответ: а) 3 4 57 987≈3 5 00 000 разряд сотен тысяч б) 4 57 3 426≈4 57 3 000 разряд тысяч в)1 6 7 841≈1 7 0 000 разряд десятков тысяч.

    Пример №2:
    Округлите число до разрядов 5 999 994: а) десятков б) сотен в) миллионов.
    Ответ: а) 5 999 99 4 ≈5 999 990 б) 5 999 9 9 4≈6 000 000 (т.к. разряды сотен, тысяч, десятков тысяч, сотен тысяч цифра 9, каждый разряд увеличился на 1) 5 9 99 994≈6 000 000.

    tutomath.ru

    Правила округление натуральных чисел

    Правила округления натуральных чисел.
    Округление числа до некоторого разряда.

    Время от времени в стране проводится перепись населения. Каждый день люди рождаются, умирают, меняют место жительства, поэтому число жителей постоянно меняется. Допустим, что в одном городе 34 489 жителей. Соответственно, при передвижениях людей в этом числе будут изменяться цифры разрядов единиц, десятков и даже сотен. Такие цифры заменяют нулями, и получаем более простое число. Можно сказать, что в городе живет приблизительно 34 000 жителей.

    Число 34 489 округлили до тысяч 34 000.
    Если мы хотим округлить какое-то число, то применяем правило :
    45|245 — черта показывает, до какого разряда мы хотим округлить.

    Если первая цифра, следующая за тем разрядом, до которого округляется число (справа от черты) 5, 6, 7, 8, 9, то последнюю оставшуюся цифру увеличивают на 1, а остальные цифры, стоящие после черты, заменяют нулями. В других случаях последнюю оставшуюся цифру не изменяют.

    Данное число и число, полученное при его округлении приближенно равны.Это записывается при помощи знака » » «.
    45|245 » 45 000, так как цифра, следующая за разрядом тысяч 2.
    124 7 | 89 » 124 800, так как цифра, следующая за разрядом сотен 8.

    Округли числа 12 344; 12 343; 12 342; 12 340; 12 341 до десятков.
    .

    Округление натуральных чисел используется при вычислении цены . Вычитания производятся устно, делается прикидка результата. Например:
    358 · 56 = 20 048

    Для упрощенного умножения округлим каждое число:
    358 » 400 и 56 » 60 400 x 60 = 24 000

    Видно, что данный ответ приблизительно равен первому ответу.

    1. Приведи примеры, где можно использовать округление чисел..
    .
    .

    2. Объясни, до какого разряда округлены числа. Первый столбик округли до десятков. Второй столбик округли до тысяч

    6789 » 6800 . 12 897 » 10 000 .
    12 544 » 12 500 . 2 344 672 » 2 340 000 .
    245 673 » 245 700 . 78 358 » 78 360 .
    26 577 » 30 000 . 34 057 123 » 34 100 000 .

    www.miksike.net

    Округление чисел

    Числа округляют, когда полная точность не нужна или невозможна.

    Округлить число до определенной цифры (знака), значит заменить его близким по значению числом с нулями на конце.

    Натуральные числа округляют до десятков, сотен, тысяч и т.д. Названия цифр в разрядах натурального числа можно вспомнить в теме натуральные числа.

    В зависимости от того, до какого разряда надо округлить число, мы заменяем нулями цифру в разрядах единиц, десятков и т.д.

    Если число округляется до десятков, то нулями заменяем цифру в разряде единицы.

    Если число округляется до сотен, то цифра ноль должна стоять и в разряде единиц, и в разряде десятков.

    Число, полученное при округлении, называют приближённым значением данного числа.

    Записывают результат округления после специального знака « ≈ ». Этот знак читается как «приближённо равно».

    При округлении натурального числа до какого-либо разряда надо воспользоваться правилами округления.

    1. Подчеркнуть цифру разряда, до которого надо округлить число.
    2. Отделить все цифры, стоящие справа этого разряда вертикальной чертой.
    3. Если справа от подчёркнутой цифры стоит цифра 0, 1, 2, 3 или 4 , то все цифры, которые отделены справа, заменяются нулями. Цифру разряда, до которой округляли, оставляем без изменений.
    4. Если справа от подчёркнутой цифры стоит цифра 5, 6, 7, 8 или 9 , то все цифры, которые отделены справа, заменяются нулями, а к цифре разряда, до которой округляли, прибавляется 1 .

    Поясним на примере. Округлим 57 861 до тысяч. Выполним первые два пункта из правил округления.

    После подчёркнутой цифры стоит цифра 8 , значит к цифре разряда тысяч (у нас это 7 ) прибавим 1 , а все цифры, отделённые вертикальной чертой заменим нулями.

    Теперь округлим 756 485 до сотен.

    Округлим 364 до десятков.

    3 6 |4 ≈ 360 — в разряде единиц стоит 4 , поэтому мы оставляем 6 в разряде десятков без изменений.

    На числовой оси число 364 заключено между двумя «круглыми» числами 360 и 370 . Эти два числа называют приближёнными значениями числа 364 с точностью до десятков.

    Число 360 — приближённое значение с недостатком, а число 370 — приближённое значение с избытком.

    В нашем случае, округлив 364 до десятков, мы получили, 360 — приближённое значение с недостатком.

    Округлённые результаты часто записывают без нулей, добавляя сокращения «тыс.» (тысяча), «млн.» (миллион) и «млрд.» (миллиард).


Обсуждение закрыто.