По закону ома для цепи не содержащей эдс

По закону ома для цепи не содержащей эдс

Возьмем два участка цепи a b и c d (см. рис. 1) и составим для них уравнения в комплексной форме с учетом указанных на рис. 1 положительных направлений напряжений и токов.

Объединяя оба случая, получим

или для постоянного тока

Формулы (1) и (2) являются аналитическим выражением закона Ома для участка цепи с источником ЭДС, согласно которому ток на участке цепи с источником ЭДС равен алгебраической сумме напряжения на зажимах участка цепи и ЭДС, деленной на сопротивление участка. В случае переменного тока все указанные величины суть комплексы. При этом ЭДС и напряжение берут со знаком “+”, если их направление совпадает с выбранным направлением тока, и со знаком “-”, если их направление противоположно направлению тока.

Основы символического метода расчета цепей
синусоидального тока

Расчет цепей переменного синусоидального тока может производиться не только путем построения векторных диаграмм, но и аналитически – путем операций с комплексами, символически изображающими синусоидальные ЭДС, напряжения и токи. Достоинством векторных диаграмм является их наглядность, недостатком – малая точность графических построений. Применение символического метода позволяет производить расчеты цепей с большой степенью точности.

Символический метод расчета цепей синусоидального тока основан на законах Кирхгофа и законе Ома в комплексной форме.

Уравнения, выражающие законы Кирхгофа в комплексной форме, имеют совершенно такой же вид, как и соответствующие уравнения для цепей постоянного тока. Только токи, ЭДС, напряжения и сопротивления входят в уравнение в виде комплексных величин.

1. Первый закон Кирхгофа в комплексной форме:

2. Второй закон Кирхгофа в комплексной форме:

или применительно к схемам замещения с источниками ЭДС

3. Соответственно матричная запись законов Кирхгофа в комплексной форме имеет вид:

§ первый закон Кирхгофа:

§ второй закон Кирхгофа

1. .

2. .

3.

.

4. Принимая начальную фазу напряжения за нуль, запишем:

.

.

5. Поскольку ток распределяется обратно пропорционально сопротивлению ветвей (это вытекает из закона Ома), то

6. .

7. Аналогичный результат можно получить, составив для данной схемы уравнения по законам Кирхгофа в комплексной форме

или после подстановки численных значений параметров схемы

Специальные методы расчета

Режим работы любой цепи полностью характеризуется уравнениями, составленными на основании законов Кирхгофа. При этом необходимо составить и решить систему с n неизвестными, что может оказаться весьма трудоемкой задачей при большом числе n ветвей схемы. Однако, число уравнений, подлежащих решению, может быть сокращено, если воспользоваться специальными методами расчета, к которым относятся методы контурных токов и узловых потенциалов.

Метод контурных токов

Идея метода контурных токов: уравнения составляются только по второму закону Кирхгофа, но не для действительных, а для воображаемых токов, циркулирующих по замкнутым контурам, т.е. в случае выбора главных контуров равных токам ветвей связи. Число уравнений равно числу независимых контуров, т.е. числу ветвей связи графа . Первый закон Кирхгофа выполняется автоматически. Контуры можно выбирать произвольно, лишь бы их число было равно и чтобы каждый новый контур содержал хотя бы одну ветвь, не входящую в предыдущие. Такие контуры называются независимыми. Их выбор облегчает использование топологических понятий дерева и ветвей связи.

Направления истинных и контурных токов выбираются произвольно. Выбор положительных направлений перед началом расчета может не определять действительные направления токов в цепи. Если в результате расчета какой-либо из токов, как и при использовании уравнений по законам Кирхгофа, получится со знаком “-”, это означает, что его истинное направление противоположно.

Читайте так же:  Ликвидация внутренних

Пусть имеем схему по рис. 3.

Выразим токи ветвей через контурные токи:

;

; ;

; .

Обойдя контур aeda , по второму закону Кирхгофа имеем

.

Поскольку ,

.

Таким образом, получили уравнение для первого контура относительно контурных токов. Аналогично можно составить уравнения для второго, третьего и четвертого контуров:

совместно с первым решить их относительно контурных токов и затем по уравнениям, связывающим контурные токи и токи ветвей, найти последние.

Однако данная система уравнений может быть составлена формальным путем:

При составлении уравнений необходимо помнить следующее:

— сумма сопротивлений, входящих в i —й контур;

— сумма сопротивлений, общих для i —го и k —го контуров, причем ;

члены на главной диагонали всегда пишутся со знаком “+”;

знак “+” перед остальными членами ставится в случае, если через общее сопротивление i —й и k — й контурные токи проходят в одном направлении, в противном случае ставится знак “-”;

если i —й и k — й контуры не имеют общих сопротивлений, то ;

в правой части уравнений записывается алгебраическая сумма ЭДС, входящих в контур: со знаком “+”, если направление ЭДС совпадает с выбранным направлением контурного тока, и “-”, если не совпадает.

В нашем случае, для первого уравнения системы, имеем:

Следует обратить внимание на то, что, поскольку , коэффициенты контурных уравнений всегда симметричны относительно главной диагонали.

Если в цепи содержатся помимо источников ЭДС источники тока, то они учитываются в левых частях уравнений как известные контурные токи: k — й контурный ток, проходящий через ветвь с k — м источником тока равен этому току .

Метод узловых потенциалов

Данный метод вытекает из первого закона Кирхгофа. В качестве неизвестных принимаются потенциалы узлов, по найденным значениям которых с помощью закона Ома для участка цепи с источником ЭДС затем находят токи в ветвях. Поскольку потенциал – величина относительная, потенциал одного из узлов (любого) принимается равным нулю. Таким образом, число неизвестных потенциалов, а следовательно, и число уравнений равно , т.е. числу ветвей дерева .

Пусть имеем схему по рис. 4, в которой примем .

Допустим, что и известны. Тогда значения токов на основании закона Ома для участка цепи с источником ЭДС

Запишем уравнение по первому закону Кирхгофа для узла а :

и подставим значения входящих в него токов, определенных выше:

.

Сгруппировав соответствующие члены, получим:

.

Аналогично можно записать для узла b :

.

Как и по методу контурных токов, система уравнений по методу узловых потенциалов может быть составлена формальным путем. При этом необходимо руководствоваться следующими правилами:

1. В левой части i —го уравнения записывается со знаком “+”потенциал i —го узла, для которого составляется данное i —е уравнение, умноженный на сумму проводимостей ветвей, присоединенных к данному i —му узлу, и со знаком “-”потенциал соседних узлов, каждый из которых умножен на сумму проводимостей ветвей, присоединенных к i —му и k —му узлам.

Из сказанного следует, что все члены , стоящие на главной диагонали в левой части системы уравнений, записываются со знаком “+”, а все остальные – со знаком “-”, причем . Последнее равенство по аналогии с методом контурных токов обеспечивает симметрию коэффициентов уравнений относительно главной диагонали.

2. В правой части i —го уравнения записывается так называемый узловой ток , равный сумме произведений ЭДС ветвей, подходящих к i —му узлу, и проводимостей этих ветвей. При этом член суммы записывается со знаком “+”, если соответствующая ЭДС направлена к i —му узлу, в противном случае ставится знак “-”. Если в подходящих к i —му узлу ветвях содержатся источники тока, то знаки токов источников токов, входящих в узловой ток простыми слагаемыми, определяются аналогично.

Читайте так же:  Получение разрешения на применение оборудования

В заключение отметим, что выбор того или иного из рассмотренных методов определяется тем, что следует найти, а также тем, какой из них обеспечивает меньший порядок системы уравнений. При расчете токов при одинаковом числе уравнений предпочтительнее использовать метод контурных токов, так как он не требует дополнительных вычислений с использованием закона Ома. Метод узловых потенциалов очень удобен при расчетах многофазных цепей, но не удобен при расчете цепей со взаимной индуктивностью.

1. Основы теории цепей: Учеб.для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с

Контрольные вопросы и задачи

1. В ветви на рис. 1 . Определить ток .

Ответ: .

2. В чем заключается сущность символического метода расчета цепей синусоидального тока?

3. В чем состоит сущность метода контурных токов?

4. В чем состоит сущность метода узловых потенциалов?

5. В цепи на рис. 5 ; ; ; . Методом контурных токов определить комплексы действующих значений токов ветвей.

Ответ: ; ; .

6. В цепи на рис. 6 . Рассчитать токи в ветвях, используя метод узловых потенциалов.

Ответ: ; ; ; ; ; ; .

www.toehelp.ru

По закону ома для цепи не содержащей эдс

Теорема физики (формула) и словесная формулировка математической записи: ток на участке цепи I, содержащем ЭДС ε, равен сумме разности потенциалов на этом участке φ1φ2 и ЭДС источника ε, деленной на общее сопротивление участка R: \(I = \frac<<<\varphi _<\rm<1>>> — <\varphi _<\rm<2>>> + <\rm<\varepsilon >>>>\) ,

причем R= R1 + r, где r − внутреннее сопротивление источника ЭДС, а R1 − суммарное сопротивление остальных элементов участка. ЭДС ε берется со знаком «плюс», если ток, создаваемый ЭДС, течет так же, как ток участка, и со знаком «минус», если в противоположную сторону.

Доказательство теоремы. Вывод формулы: докажем теорему с помощью закона сохранения энергии. Работа электрических и сторонних сил по перемещению заряда на участке А равна изменению электрической энергии ∆W, и, если провода и другие элементы участка остаются неподвижны, то вся эта энергия переходит в джоулево тепло Q: Q = ∆W; Q = А. (1)

А = q·ε + q·(φ1 − φ2), а Джоулево тепло Q = I 2 Rt = IR·It = IR·q (здесь использовано определение постоянного тока I = q/t). Подставляя в (1) значения величин и сокращая на q, придем к искомой формуле:

При выводе учтено, что тепловые потери присутствуют и внутри источника ЭДС, т.е. R= R1 + r, где r − внутреннее сопротивление источника ЭДС, а R1 − суммарное сопротивление остальных элементов выбранного участка.

1. Если участок не содержит ЭДС (ε = 0), формула совпадает с законом Ома для участка цепи, не содержащего ЭДС:

2. Для полной цепи точка 1 совпадает с точкой 2: φ1 − φ2 = 0, и получаем закон Ома для полной цепи: \(I = \frac<<\rm<\varepsilon >>><>\) ,

где r – внутреннее сопротивление источника, а R – сопротивление остальных элементов цепи.

Читайте так же:  Пенсии в жуковском

Условия выполнения: поскольку при выводе использовано следствие из закона ДжоуляЛенца, основанное на законе Ома, то формула выполняется тогда же, когда и закон Ома: для проводников (металлов) и полупроводников в интервале температур от превышающих температуры сверхпроводимости до температуры плавления. Кроме того, элементы цепи не должны совершать механических движений и не должно происходить других видов потерь энергии.

il.tpu.ru

ЗАКОН ОМА ДЛЯ УЧАСТКА ЦЕПИ

Закон Ома для участка цепи, безусловно, можно описать известной из школьного курса физики формулой: I=U/R , но некоторые изменения и уточнения внести, думаю, стоит.

Возьмем замкнутую электрическую цепь (рисунок 1) и рассмотрим ее участок между точками 1-2. Для простоты я взял участок электрической цепи, не содержащий источников ЭДС ( Е ).

Итак, закон Ома для рассматриваемого участка цепи имеет вид:

φ1-φ2=I*R , где

  • I — ток, протекающий по участку цепи.
  • R — сопротивление этого участка.
  • φ1-φ2 — разность потенциалов между точками 1-2.

Если учесть, что разность потенциалов это напряжение, то приходим к производной формулы закона Ома, которая приведена в начале страницы: U=I*R

Это формула закона Ома для пассивного участка цепи (не содержащего источников электроэнергии).

В неразветвленной электрической цепи (рис.2) сила тока во всех участках одинакова, а напряжение на любом участке определяется его сопротивлением:

  • U1=I*R1
  • U2=I*R2
  • Un=I*Rn
  • U=I*(R1+R2+. +Rn
  • Отсюда можно получить формулы, которые пригодятся при практических вычислениях. Например:

    Расчет сложных (разветвленных) цепей осуществляется с помощью законов Кирхгофа.

    ПРАВИЛО ЗНАКОВ ДЛЯ ЭДС

    Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:

    Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной (рис.3.1). В противном случае — ЭДС считается отрицательной (рис.3.2).

    Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E1+E2+. +En , естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2-E3 .

    При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.

    ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ

    Закон Ома для полной цепи — его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r) .

    Приведенная формула закона Ома содержит обозначение r , которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС. Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r — сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.

    Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r , то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной.

    Закон Ома рассмотрен здесь достоточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.

    © 2012-2018 г. Все права защищены.

    Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

    eltechbook.ru


Обсуждение закрыто.