3 правила треугольника

3 правила треугольника

Datalife Engine Demo

В этой статье мы познакомимся с очень важным понятием из раздела линейной алгебры, которое называется определитель.

Сразу хотелось бы отметить важный момент: понятие определитель действительно только для квадратных матриц (число строк = числу столбцов), у других матриц его нет.

4. А теперь рассмотрим примеры с действительными числами:

Правило треугольника — это способ вычисления определителя матрицы, который предполагает его нахождение по следующей схеме:

Как вы уже поняли, метод был назван правилом треугольника в следствии того, что перемножаемые элементы матрицы образуют своеобразные треугольники.

Для того, чтобы понять это лучше, разберём такой пример:

А теперь рассмотрим вычисление определителя матрицы с действительными числами правилом треугольника:

Для закрепления пройденного материала, решим ещё один практический пример:

3. Определитель транспонированной матрицы равен определителю исходной матрицы.

4. Определитель равен нулю, если элементы одной строки равны соответствующим элементам другой строки (для столбцов также). Самый простой пример этого свойства определителей:

5. Определитель равен нулю, если его 2 строки пропорциональны (также и для столбцов). Пример (1 и 2 строка пропорциональны):

6. Общий сомножитель строки (столбца) может быть вынесен за знак определителя.

7) Определитель не изменится, если к элементам какой-либо строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одну и ту же величину. Рассмотрим это на примере:

vysshaya-matematika.ru

Признаки равенства и подобия треугольников

Признаки равенства треугольников

Равными называют треугольники, у которых соответствующие стороны равны.

Теорема (первый признак равенства треугольников).
Если две стороны и угол, заключенный между ними, одного треугольника соответственно равны двум сторонам и углу, заключенному между ними, другого треугольника, то такие треугольники равны.

Теорема (второй признак равенства треугольников).
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Теорема (третий признак равенства треугольников).
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Признаки подобия треугольников

Подобными называются треугольники, у которых углы равны, а сходственные стороны пропорциональны: , , где — коэффициент подобия.

I признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.

Читайте так же:  Как заработать деньги в интернете не развод

II признак подобия треугольников. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

III признак подобия треугольников. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

Следствие: Площади подобных треугольников относятся как квадрат коэффициента подобия: .

www.fmclass.ru

Треугольник

Треугольник. Остроугольный, тупоугольный и прямоугольный треугольник.

Катеты и гипотенуза. Равнобедренный и равносторонний треугольник.

Основные свойства треугольников. Сумма углов треугольника.

Внешний угол треугольника. Признаки равенства треугольников.

Признаки равенства прямоугольных треугольников.

Замечательные линии и точки в треугольнике: высоты, медианы,

биссектрисы, срединны e перпендикуляры, ортоцентр,

центр тяжести, центр описанного круга, центр вписанного круга.

Теорема Пифагора. Соотношение сторон в произвольном треугольнике.

Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.


Если все три угла острые ( рис.20 ), то это остроугольный треугольник . Если один из углов прямой ( C, рис.21 ), то это прямоугольный треугольник; стороны a , b , образующие прямой угол, называются катетами; сторона c , противоположная прямому углу, называется гипотенузой. Если один из углов тупой ( B, рис.22 ), то это тупоугольный треугольник.

Треугольник ABC ( рис.23 ) — равнобедренный , если две его стороны равны ( a = c ); эти равные стороны называются боковыми, третья сторона называется основанием треугольника. Треугольник ABC ( рис.24 ) – равносторонний , если все его стороны равны ( a = b = c ). В общем случае ( abc ) имеем неравносторонний треугольник.

Основные свойства треугольников. В любом треугольнике:

1. Против большей стороны лежит больший угол, и наоборот.

2. Против равных сторон лежат равные углы, и наоборот.

В частности, все углы в равностороннем треугольнике равны.

3. Сумма углов треугольника равна 180 º .

Из двух последних свойств следует, что каждый угол в равностороннем

треугольнике равен 60 º.

4. Продолжая одну из сторон треугольника ( AC , рис.25), получаем внешний

угол BCD . Внешний угол треугольника равен сумме внутренних углов,

не смежных с ним : BCD = A + B .

5. Любая сторона треугольника меньше суммы двух других сторон и больше

их разности ( a bc; b ac; c ab ).

Признаки равенства треугольников.

Треугольники равны, если у них соответственно равны:

a ) две стороны и угол между ними;

b ) два угла и прилегающая к ним сторона;

Признаки равенства прямоугольных треугольников.

Д ва прямоугольных треугольника равны, если выполняется одно из следующих условий:

1) равны их катеты;

2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого;

3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;

4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;

Читайте так же:  Претензии за неуплату

5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.

Замечательные линии и точки в треугольнике.

Высота треугольника — это перпендикуляр, опущенный из любой вершины на противоположную сторону ( или её продолжение ). Эта сторона называется основанием треугольника . Три высоты треугольника всегда пересекаются в одной точке , называемой ортоцентром треугольника. Ортоцентр остроугольного треугольника ( точка O , рис.26 ) расположен внутри треугольника, а ортоцентр тупоугольного треугольника ( точка O , рис.27 ) снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

Медиана – это отрезок , соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника ( AD , BE , CF , рис.28 ) пересекаются в одной точке O , всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.

Биссектриса – это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника ( AD , BE , CF , рис.29 ) пересекаются в одной точке О, всегда лежащей внутри треугольника и являющейся центром вписанного круга (см. раздел «Вписанные и описанные многоугольники»).

Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам ; например, на рис.29 AE : CE = AB : BC .

Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника АВС ( KO , MO , NO , рис.30 ) пересекаются в одной точке О, являющейся центром описанного круга ( точки K , M , N – середины сторон треугольника ABC ).

В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном – снаружи; в прямоугольном — в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.

Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Доказательство теоремы Пифагора с очевидностью следует из рис.31. Рассмотрим прямоугольный треугольник ABC с катетами a , b и гипотенузой c .

Построим квадрат AKMB , используя гипотенузу AB как сторону. Затем продолжим стороны прямоугольного треугольника ABC так, чтобы получить квадрат CDEF , сторона которого равна a + b . Теперь ясно, что площадь квадрата CDEF равна ( a + b ) 2 . С другой стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB , то есть

и окончательно имеем:

Соотношение сторон в произвольном треугольнике.

В общем случае ( для произвольного треугольника ) имеем:

где C – угол между сторонами a и b .

www.bymath.net

Журнал «Квант»

Скаляры можно складывать, умножать и делить так же, как обычные числа.

Поскольку вектор характеризуется не только числовым значение, но и направлением, сложение векторов не подчиняется правилам сложения чисел. Например, пусть длины векторов a = 3 м, b = 4 м, тогда a + b = 3 м + 4 м = 7 м. Но длина вектора \(\vec c = \vec a + \vec b\) не будет равна 7 м (рис. 1).

Читайте так же:  Щит из иска

Рис. 1.

Для того, чтобы построить вектор \(\vec c = \vec a + \vec b\) (рис. 2), применяются специальные правила сложения векторов.

Рис. 2.

А длину вектора суммы \(\vec c = \vec a + \vec b\) определяют по теореме косинусов \(c = \sqrt\), где \(\alpha\,\) – угол между векторами \(\vec a\) и \(\vec b\).

Правило треугольника

В зарубежной литературе этот метод называют «хвост к голове».

Для того чтобы сложить два вектора \(\vec a\) и \(\vec b\) (рис. 3, а) нужно переместить вектор \(\vec b\) параллельно самому себе так, чтобы его начало совпадало с концом вектора \(\vec a\) (рис. 3, б). Тогда их суммой будет вектор \(\vec c\), начало которого совпадает с началом вектора \(\vec a\), а конец — с концом вектора \(\vec b\) (рис. 3, в).

а б в Рис. 3.

Результат не поменяется, если перемещать вместо вектора \(\vec b\) вектор \(\vec a\) (рис. 4), т.е. \(\vec b + \vec a = \vec a + \vec b\) (свойство коммутативности векторов).

а б в Рис. 4. vector-treug-1.swf «Правило треугольников» Пример 1 Увеличить Flash vector-treug-2.swf «Правило треугольников» Пример 2 Увеличить Flash Рис. 5.

При помощи правила треугольника можно сложить два параллельных вектора \(\vec a\) и \(\vec b\) (рис. 6, а) и \(\vec a\) и \(\vec d\) (рис. 7, а). Суммы этих векторов \(\vec c = \vec a + \vec b\) и \(\vec f = \vec a + \vec d\) изображены на рис. 6, б и 7, б. Причем, модули векторов \(c = a + b\) и \(f=\left|a-d\right|\).

а б Рис. 6. а б Рис. 7.

Правило треугольника можно применять при сложении трех и более векторов. Например, \(\vec c = \vec a_1 + \vec a_2 +\vec a_3 +\vec a_4\) (рис. 8).

Рис. 8.

Правило параллелограмма

Для того чтобы сложить два вектора \(\vec a\) и \(\vec b\) (рис. 9, а) нужно переместить их параллельно самим себе так, чтобы начала векторов \(\vec a\) и \(\vec b\) находились в одной точке (рис. 9, б). Затем построить параллелограмм, сторонами которого будут эти вектора (рис. 9, в). Тогда суммой \(\vec a+ \vec b\) будет вектор \(\vec c\), начало которого совпадает с общим началом векторов, а конец — с противоположной вершиной параллелограмма (рис. 9, г).

а б в г Рис. 9. vector-paral-1.swf «Правило параллепипеда» Увеличить Flash Рис. 10.

Вычитание векторов

Для того чтобы найти разность двух векторов \(\vec a\) и \(\vec b\) (рис. 11) нужно найти вектор \(\vec c = \vec a + \left(-\vec b \right)\) (см. Умножение вектора на скаляр) по правилу треугольника (рис. 12) или по правилу параллелограмма (рис. 13).

Рис. 11 а б в Рис. 12. а б б в Рис. 13.

www.physbook.ru


Обсуждение закрыто.