Какое разрешение на айфоне 5s

Какое разрешение на айфоне 5s

Поразительные примеры фотографий, снятых на iPhone 5 [фото]

13 Сен, 2012 31 комментарий

На пресс-конференции в Сан-Франциско, вечером во среду, 12 сентября, Apple представила iPhone 5 – новое поколение смартфонов под управлением операционной системы iOS 6.

Сейчас iPhone 5 является самой обсуждаемой темой в Интернете. Блогеры и журналисты скрупулезно изучают смартфон и делают выводы, кто-то уже скрещивает пальцы на скорое появление гаджета в России. Тем временем, изображения, представленные в ходе презентации, демонстрируют потрясающие возможности камеры iPhone 5. Казалось бы, что здесь может быть интересного, ведь 8 мегапикселями в телефоне в конце 2012 года уже никого не удивишь.

Тем не менее, компании все же удалось улучшить основную камеру iSight — она имеет разрешение 8 МПикс, ИК-фильтр и диафрагму f/2,4. Сенсор подсвечивается, благодаря чему значительно увеличится его чувствительность при съемке в условиях слабого освещения. iPhone 5 позволяет делать еще более качественные HD-снимки в формате 3264х2448 точек.

Отличительной особенностью iPhone 5 является панорамный режим съемки с разрешением 28 мегапикселей. Благодаря новому процессору съемка фотографии осуществляется на 40% быстрее. Кроме того, камера новинки получила окошечко из сапфирового стекла, которое защищает объектив и делает изображение четче.

В смартфоне также реализован режим распознавания лиц, и iSight различает портреты и групповые портреты, фокусируясь во втором случае по наиболее выделяющемуся лицу в кадре, после чего проводит балансировку выдержки по 10 лицам.

Вкупе все эти функции превращают iPhone 5 в отличную фото- и видеокамеру, способную записывать 1080p-видео на скорости 30 кадров в секунду со стабилизацией изображения. При этом, съемка роликов может сопровождаться фотогра­фированием.

В ходе презентации компания показала несколько примеров, на что способна камера iPhone 5. Предлагаем их и нашим читателям. По нажатию на превью открывается большой снимок с разрешением 3264 х 2448 пикселей.

Присоединяйтесь к нам в Twitter, ВКонтакте, Facebook, Google+ или через RSS, чтобы быть в курсе последних новостей из мира Apple, Microsoft и Google.

www.macdigger.ru

Apple iPhone 5s — Технические характеристики

Размеры: 58.6 x 123.8 x 7.6 мм
Вес: 112 г
SoC: Apple A7 APL0698
Процессор: Apple Cyclone ARMv8, 1300 МГц, Количество ядер: 2
Графический процессор: PowerVR G6430, 200 МГц, Количество ядер: 4
Оперативная память: 1 ГБ
Встроенная память: 16 ГБ, 32 ГБ
Экран: 4 in, IPS, 640 x 1136 пикселей, 24 бит
Аккумулятор: 1560 мА·ч, Li-polymer (Литий-полимерный)
Oперационная система: iOS 7.0.3
Камера: 3264 x 2448 пикселей, 1920 x 1080 пикселей, 30 кадров/сек
SIM-карта: Nano-SIM
Wi-Fi: a, b, g, n, Dual band, Wi-Fi Hotspot
USB: 2.0
Bluetooth: 4.0
Навигация: GPS, A-GPS, GLONASS, Wi-Fi, Cell ID

Марка и модель

Информация о марке, модели и альтернативных названиях конкретного устройства, если таковые имеются.

Имя компании-производителя устройства.

Название модели устройства.

Другие названия, которыми модель обозначается.

Информация о размерах и весе устройства, представленная в разных единицах измерения. Использованные материалы, предлагаемые цвета, сертификаты.

Информация о ширине — имеется ввиду горизонтальная сторона устройства при его стандартной ориентации во время употребления.

Информация о высоте — имеется ввиду вертикальная сторона устройства при его стандартной ориентации во время употребления.

Информация о толщине устройства в разных единицах измерения.

Информация о весе устройства в разных единицах измерения.

Приблизительный объем устройства, вычисленный на основе размеров, предоставленных производителем. Относится к устройствам с формой прямоугольного параллелепипеда.

Информация о цветах, в которых предлагается в продаже данное устройство.

Материалы, использованные для изготовления корпуса устройства.

SIM-карта используется в мобильных устройствах для сохранения данных, удостоверяющих аутентичность абонентов мобильных услуг.

Информация о типе и размере (форм-факторе) SIM-карты, использованной в устройстве.

Информация о количестве SIM-карт, которые поддерживает устройство.

Мобильные сети

Мобильная сеть — это радио-система, которая позволяет множеству мобильных устройств обмениваться данными между собой.

GSM (Global System for Mobile Communications) разработана, чтобы заменить аналоговую мобильную сеть (1G). По этой причине GSM очень часто называется и 2G мобильной сетью. Она улучшена добавлением GPRS (General Packet Radio Services), а позднее и EDGE (Enhanced Data rates for GSM Evolution) технологий.

CDMA (Code-Division Multiple Access) — это канальный метод доступа, использованный при коммуникациях в мобильных сетях. По сравнению с другими 2G и 2.5G стандартами, как GSM и TDMA, он предоставляет более высокие скорости переноса данных и возможность соединения большего количества потребителей в одно и то же время.

CDMA2000 — это группа 3G стандартов мобильных сетей, базированных на CDMA. Их преимущества включают более мощный сигнал, меньше перебоев и обрывов сети, поддержку аналогового сигнала, широкий спектральный охват и др.

UMTS — это сокращение Universal Mobile Telecommunications System. Она базирована на GSM стандарт и относится к 3G мобильным сетям. Разработана 3GPP и ее самым большим преимуществом является предоставление большей скорости и спектральной эффективности благодаря W-CDMA технологии.

LTE (Long Term Evolution) определяется как технология четвертого поколения (4G). Она разработана 3GPP на базе GSM/EDGE и UMTS/HSPA с целью увеличить емкость и скорость беспроводных мобильных сетей. Последующее развитие технологий называется LTE Advanced.

Технологии мобильной связи и скорость передачи данных

Коммуникация между устройствами в мобильных сетях осуществляется посредством технологий, предоставляющих разные скорости передачи данных.

Существует несколько технологий, улучшающих работу мобильных сетей главным образом путем увеличения пропускной способности. Информация о коммуникационных технологиях, которые поддерживает устройство, и поддерживаемых скоростях передачи данных.

Oперационная система

Операционная система — это системное программное обеспечение, управляющее и координирующее работу хардверных компонентов в устройстве.

Информация об операционной системе, используемой устройством, а также о ее версии.

SoC (Система на кристалле)

Система на кристалле (SoC) включает в один чип все самые главные хардверные компоненты мобильного устройства.

Система на кристалле (SoC) интегрирует различные хардверные компоненты, таких как процессор, графический процессор, память, периферия, интерфейсы и др., а также и софтвер, необходимый для их функционирования.

Информация о технологическом процессе, по которому изготовлен чип. Величиной в нанометрах измеряют половину расстояния между элементами в процессоре.

Основная функция процессора (CPU) мобильного устройства — это интерпретация и выполнение инструкций, содержащихся в программных приложениях.

Разрядность (биты) процессора определяется размером (в битах) регистров, адресных шин и шин для данных. 64-битные процессоры обладают более высокой производительностью по сравнению с 32-битными, которые со своей стороны более производительны, чем 16-битные процессоры.

Инструкции — это команды, с помощью которых софтуер задает/управляет работой процессора. Информация об наборе командов (ISA), которые процессор может выполнять.

Кэш-память используется процессором, чтобы сократить время доступа к более часто используемым данным и инструкциям. L1 (уровень 1) кэш-память отличается маленьким объемом и работает намного быстрее как системной памяти, так и остальных уровней кэш-памяти. Если процессор не обнаружит запрашиваемых данных в L1, он продолжает искать их в L2 кэш-памяти. При некоторых процессорах этот поиск производится одновременно в L1 и L2.

Читайте так же:  Как оформить трудоустройство работника

L2 (уровень 2) кэш-память медленнее L1, но взамен она отличается большим капацитетом, позволяющим кэширование большего количества данных. Она, так же как и L1, намного быстрее системной памяти (RAM). Если процессор не обнаружит запрашиваемых данных в L2, он продолжает искать их в L3 кэш-памяти (если таковая имеется в наличии) или в RAM-памяти.

L3 (уровень 3) кэш-память медленнее L2, но взамен она отличается большим капацитетом, позволяющим кэширование большего количества данных. Она, так же как и L2, намного быстрее системной памяти (RAM).

Ядро процессора выполняет программные инструкции. Существуют процессоры с одним, двумя и более ядрами. Наличие большего количества ядер увеличивает производительность, позволяя параллельное выполнение множества инструкций.

Тактовая частота процессора описывает его скорость посредством циклов в секунду. Она измеряется в мегагерцах (MHz) или гигагерцах (GHz).

Графический процессор (GPU) обрабатывает вычисления для различных 2D/3D графических приложений. В мобильных устройствах он используется чаще всего играми, потребительским интерфейсом, видео-приложениями и др.

Подобно процессору, графический процессор состоит из нескольких рабочих частей, которые называются ядрами. Они обрабатывают графические вычисления разных приложений.

Скорость работы — это тактовая частота графического процессора, которая измеряется в мегагерцах (MHz) или гигагерцах (GHz).

Оперативная память (RAM) используется операционной системой и всеми инсталлированными приложениями. Данные, которые сохраняются в оперативной памяти, теряются после выключения или рестартирования устройства.

Информация о типе оперативной памяти (RAM) используемый устройством.

Встроенная память

Каждое мобильное устройство имеет встроенную (несъемную) память с фиксированным объемом.

Информация об объеме встроенной памяти устройства. Часто данная модель предлагается в разных вариантах с разным объемом встроенной памяти.

Экран мобильного устройства характеризуется своей технологией, разрешением, плотностью пикселей, длиной диагонали, глубиной цвета и др.

Одна из основных характеристик экрана — это технология, по которой он изготовлен и от которой напрямую зависит качество изображения информации.

У мобильных устройств размер экрана выражается посредством длины его диагонали, измеренной в дюймах.

Приблизительная ширина экрана

Приблизительная высота экрана

Соотношение размеров длинной стороны экрана к его короткой стороне

Разрешение экрана показывает количество пикселей по вертикали и горизонтали экрана. Более высокое разрешение означает более четкую деталь изображения.

Информация о количестве пикселей на сантиметр или дюйм экрана. Более высокая плотность позволяет показывать информацию на экране с более четкими деталями.

Глубина цвета экрана отражает общее количество битов, использованных для цветовых компонентов в одном пикселе. Информация о максимальном количестве цветов, которые экран может показать.

Приблизительная площадь в процентах, занимаемая экраном на передней панели устройства.

Информация о других функциях и характеристиках экрана.

Различные датчики выполняют различные количественные измерения и конвертируют физические показатели в сигналы, которые распознает мобильное устройство.

Датчики бывают разные по типу и предназначению и повышают общую функциональность устройства, в котором они интегрированы.

Основная камера

Основная камера мобильного устройства обычно расположена на задней части корпуса и используется для фото- и видеосъемки.

Информация о производителе и модели фотодатчика, использованного в камере устройства.

Цифровые камеры используют фотодатчики для фотосъемки. Датчик, также как и оптика являются одним из основных факторов качества камеры в мобильном устройстве.

Информация о размерах фотодатчика, используемого в устройстве. Обычно камеры с более крупным датчиком и с меньшей плотностью пикселей предлагают более высокое качество изображения несмотря на более низкое разрешение.

Меньший размер пикселя фотодатчика позволяет использовать больше пикселей на единицу площади, увеличивая таким образом разрешительную способность. С другой стороны, меньший размер пикселя может оказать отрицательное влияние на качество изображения при высоких уровнях светочувствительности (ISO).

Кроп-фактор — это соотношение между размерами полнокадрового датчика (36 х 24 мм, эквивалентный кадру стандартной 35 мм пленки) и размерами фотодатчика устройства. Указанное число представляет собой соотношение диагоналей полнокадрового датчика (43.3 мм) и фотодатчика конкретного устройства.

Показатели ISO определяют уровень светочувствительности фотодатчика. Более низкий показатель означает более слабую светочувствительность и наоборот — более высокие показатели означают более высокую светочувствительность, т. е. лучшую способность датчика работать в условиях низкой освещенности.

Фокусное расстояние — это расстояние в миллиметрах от фотодатчика до оптического центра линзы. Указано также и эквивалентное фокусное расстояние, обеспечивающее то же самое поле видения при полнокадровой (full frame) камере.

Наиболее часто встречающиеся типы вспышек в камерах мобильных устройств — это LED и ксеноновые вспышки. LED-вспышки дают более мягкий свет и в отличие от более ярких ксеноновых используются и при видеосъемках.

Одна из основных характеристик камер мобильных устройств — это их разрешение, которое показывает количество пикселей по горизонтали и вертикали изображения.

Информация о максимально поддерживаемом разрешении при видеосъемке устройством.

Информация о максимальном количестве кадров в секунду (fps), поддерживаемом устройством при видеосъемке с максимальным разрешением. Некоторые из основных стандартных скоростей съемки и воспроизведения видео — это 24p, 25p, 30p, 60p.

Информация о других софтверных и хардверных характеристиках, связанных с основной камерой и улучшающих ее функциональность.

Дополнительная камера

Дополнительные камеры обычно монтируются над экраном устройства и используются в основном для видеоразговоров, распознавания жестов и др.

Диафрагма (f-число) — это размер отверстия диафрагмы, который контролирует количество света, достигающего до фотодатчика. Более низкое f-число означает, что отверстие диафрагмы больше.

Информация о максимальной разрешительной способности дополнительной камеры при съемке. В большинстве случаев разрешение дополнительной камеры ниже того, которое имеет основная камера.

Информация о максимально поддерживаемом разрешении при видеосъемке дополнительной камерой.

Информация о максимальном количестве кадров в секунду (fps), поддерживаемом дополнительной камерой при видеосъемке с максимальным разрешением.

Информация о типе громкоговорителей и поддерживаемых устройством аудиотехнологиях.

Громкоговоритель — это устройство, которое воспроизводит различные звуки, таких как музыка, звонки, мелодии звонков и др. Информация о типах громкоговорителей, используемых устройством.

Радио мобильного устройства представляет собой встроенный FM-приемник.

Информация о том, имеет ли устройство FM-приемник или нет.

Определение местоположения

Информация о технологиях навигации и определения местоположения, поддерживаемых устройством.

Определение местоположения осуществляется с помощью разных спутниковых навигационных систем, прослеживающих автономное геопространственное местоположение устройства, которое их поддерживает. Наиболее часто используемые спутниковые навигационные системы — это GPS и GLONASS. Существуют и неспутниковые технологии локализации мобильных устройств, как EOTD, Enhanced 911, GSM Cell ID.

Wi-Fi — это технология, которая обеспечивает беспроводную связь для передачи данных на близкие расстояния между различными устройствами.

Wi-Fi коммуникация между устройствами осуществляется через стандарты IEEE 802.11. Некоторые устройства имеют возможность служить в качестве Wi-Fi Hotspot, обеспечивая интернет-доступ для других устройств. Wi-Fi Direct (Wi-Fi P2P) — это другой полезный стандарт, позволяющий устройствам коммуницировать между собой без необходимости наличия беспроводной точки доступа (WAP).

Bluetooth — это стандарт безопасного беспроводного переноса данных между различными устройствами разного типа на небольшие расстояния.

Существует несколько версий Bluetooth, при этом каждая последующая улучшает скорость связи, охват, способствует более легкому обнаружению и подключению устройств. Информация о Bluetooth-версии устройства.

Bluetooth использует разные профили и протоколы, обеспечивающие более быстрый обмен данных, экономию энергии, улучшение обнаружения устройств и др. Некоторые из этих профилей и протоколов, которые поддерживает устройство, показаны здесь.

USB (Universal Serial Bus) — это индустриальный стандарт, который позволяет разным электронным устройствам обмениваться данными.

USB-стандарт имеет несколько версий: USB 1.0 (1996), USB 2.0 (2000), USB 3.0 (2008), и т. д. В каждой последующей версии скорость переноса данных увеличивается.

Читайте так же:  Органы опеки и попечительства москвы вакансии

USB-интерфейс в мобильных устройствах может использоваться в разных целях, например чтобы подзарядить аккумулятор, использовать устройство в качестве mass storage, host, и т. д.

Разъём для наушников

Это аудиоконнектор, который называется еще и аудиоразъемом. Наиболее широко используемый стандарт в мобильных устройствах — это 3.5 мм разъем для наушников.

Информация о том, оборудовано ли устройство 3.5 мм аудиоразъемом.

Подключение устройств

Информация о других важных технологиях подключения, поддерживаемых устройством.

Информация об одних из наиболее используемых технологий подключения, поддерживаемых устройством.

Веб-браузер — это программное приложение для доступа и рассматривания информации в интернете.

Информация о некоторых основных характеристиках и стандартах, поддерживаемых браузером устройства.

Форматы/кодеки звуковых файлов

Мобильные устройства поддерживают разные форматы и кодеки звуковых файлов, которые соответственно сохраняют и кодируют/декодируют цифровые аудиоданные.

Список некоторых основных форматов и кодеков звуковых файлов, стандартно поддерживаемых устройством.

Форматы/кодеки видео файлов

Мобильные устройства поддерживают разные форматы и кодеки видео файлов, которые соответственно сохраняют и кодируют/декодируют цифровые видеоданные.

Список некоторых основных форматов и кодеков видео файлов, стандартно поддерживаемых устройством.

Аккумулятор

Аккумуляторы мобильных устройств отличаются друг от друга по своей емкости и технологии. Они обеспечивают электрический заряд, необходимый для их функционирования.

Емкость аккумулятора показывает максимальный заряд, который он способен сохранить, измеренный в миллиампер-часах.

Тип аккумулятора определяется его структурой и, точнее, используемыми химикалами. Существуют разные типы аккумуляторов, при этом чаще всего в мобильных устройствах используются литий-ионные и литий-ион-полимерные аккумуляторы.

Время разговора в 2G — это период времени, за которое заряд аккумулятора разряжается полностью при непрерывном разговоре в 2G сети.

Время ожидания в 2G — это период времени, за которое заряд аккумулятора разряжается полностью, когда устройство находится в режиме ожидания (stand-by) и подключено к 2G сети.

Время разговора в 3G — это период времени, за которое заряд аккумулятора разряжается полностью при непрерывном разговоре в 3G сети.

Время ожидания в 3G — это период времени, за которое заряд аккумулятора разряжается полностью, когда устройство находится в режиме ожидания (stand-by) и подключено к 3G сети.

Информация о некоторых дополнительных характеристиках аккумулятора устройства.

Удельный коэффициент поглощения (SAR)

Уровень SAR обозначают количество электромагнитной радиации, поглощаемой организмом человека во время пользования мобильным устройством.

Уровень SAR указывает на максимальное количество электромагнитной радиации, которой подвергается организм человека, если держать мобильное устройство рядом с ухом в положении для переговора. В Европе максимальное допустимое значение SAR для мобильных устройств ограничено до 2 Вт/кг на 10 граммов человеческой ткани. Данный стандарт установлен комитетом CENELEC в соответствии со стандартами IEC при соблюдении указаний ICNIRP от 1998 года.

Уровень SAR указывает на максимальное количество электромагнитной радиации, которой подвергается организм человека, если держать мобильное устройство на уровне бедер. Максимальное допустимое значение SAR для мобильных устройств в Европе составляет 2 Вт/кг на 10 граммов человеческой ткани. Данный стандарт установлен комитетом CENELEC при соблюдении указаний ICNIRP от 1998 года и стандартов IEC.

Уровень SAR указывает на максимальное количество электромагнитной радиации, которой подвергается организм человека, если держать мобильное устройство рядом с ухом. Максимальное значение, применяемое в США, составляет 1.6 Вт/кг на 1 грамм человеческой ткани. Мобильные устройства в США контролируются CTIA, а FCC проводит тесты и устанавливает их значения SAR.

Уровень SAR указывает на максимальное количество электромагнитной радиации, которой подвергается организм человека, если держать мобильное устройство на уровне бедер. Самое высокое допустимое значение SAR в США составляет 1.6 Вт/кг на 1 грамм человеческой ткани. Это значение устанавливается FCC, а CTIA контролирует соответствие мобильных устройств данному стандарту.

Последние сравнения устройств, включающие Apple iPhone 5s

Список последних сравнений, сделанных посетителями сайта и включающих Apple iPhone 5s

Недавно просмотренные устройства

Список мобильных устройств, чьи характеристики были недавно просмотрены

Apple iPhone 5s

Размеры: 58.6 x 123.8 x 7.6 мм
Вес: 112 г
SoC: Apple A7 APL0698
Процессор: Apple Cyclone ARMv8, 1300 МГц, Количество ядер: 2
Графический процессор: PowerVR G6430, 200 МГц
Оперативная память: 1 ГБ
Встроенная память: 16 ГБ, 32 ГБ
Экран: 4 in, IPS, 640 x 1136 пикселей, 24 бит
Аккумулятор: 1560 мА·ч, Li-polymer (Литий-полимерный)
Oперационная система: iOS 7.0.3
Камера: 3264 x 2448 пикселей, 1920 x 1080 пикселей, 30 кадров/сек

Информация на сайте предоставляется по принципу «как есть» без каких-либо гарантий. Сайт не несет ответственность за пропуски, неточности или другие ошибки в данных, которые публикует. Воспроизведение какой-либо части сайта целиком или частично, или в какой-либо другой форме без нашего предварительного письменного разрешения запрещается. Торговые марки, лого и логотипы производителей мобильных устройств, хардвер, софтвер и т. д. принадлежат соответствующим собственникам.

www.devicespecifications.com

Apple жульничает с экраном iPhone 6 Plus

Нам пишет Артем Любезный.

Подбодрившись лозунгом «Больше, чем просто больше» (Bigger than bigger), Apple представила не только iPhone 6, но и бо́льший iPhone 6 Plus. Разрешение экрана «шестерки» больше, чем у предыдущей модели 5S, и составляет 750×1334 пикселей на 4,7-дюймовом экране. Эта модель должна прийти на смену существующей линейке айфонов. Но, по всей видимости, ребята из маркетингового отдела «Эпл» почувствовали-таки уколы конкурентов с их огромными фаблетами, которые, как мы все знаем, отъедали потенциальные продажи айпэдов — и компания стала искать решение.

Давайте сделаем айфон размером 5-6 дюймов, окей, пусть будет золотая середина 5.5”. Суть маркетинговой уловки «Эпл» проста: покупателям предоставляется выбор между по-настоящему больши́м iPad, либо же просто бо́льшим iPhone — главное, чтобы они не смотрели на устройства конкурентов.

Риск подобной стратегии в том, что потенциальные владельцы двух устройств — iPhone и iPad — вполне могут решить, что им достаточно и одного iPhone-фаблета.

И вот перед нами iPhone 6 Plus с разрешением 401 ppi. Очень странное число, на первый взгляд — ошибка. Но нет, если взять разрешение 1080×1920 пикселей и пересчитать на диагональ 5.5″, то получится 400.52 ppi. Всё верно, ошибки нет. Но каким тогда будет «реальное» разрешение устройства?

Немного о разрешении экранов

Здесь следует сделать небольшое отступление и вспомнить, что помимо физического разрешения экрана в пикселях, в iOS есть ещё и логическое разрешение экрана, измеряемое в так называемых точках (dots). Точки и пиксели связаны между собой фактором масштабирования («ретина»-фактором).

Для старых моделей айфонов этот фактор равнялся единице, и физическое разрешение 320×480 пикселей соответствовало такому же логическому разрешению — 320×480 точек, или 163 dpi (фактор масштабирования 1×).

Ретина-экран в iPhone 4 получил вчетверо большее физическое разрешение — 640×960 пикселей, или 326 ppi, но логическое разрешение дисплея не поменялось, и по-прежнему составляло 320×480 точек, только теперь эти точки рисовались с двойной четкостью (фактор масштабирования 2×).

iPhone 5 получил новые размеры дисплея, но при этом его четкость осталась прежней — 640×1136 физических пикселей с диагональю 4″ дают ту же самую плотность пикселей в 326 ppi, соответствующую логической плотности 163 dpi (2×).

Наконец, в новых iPhone 6 дисплей снова увеличился до 750×1334 пикселей, но его плотность по-прежнему равна 326 ppi, а логическое разрешение масштабируется с неизменным фактором 2×, и составляет 375×667 точек, или 163 dpi.

Читайте так же:  Инструкция к приказу мвд 368

Почему точки так важны? Потому что именно в них измеряются размеры элементов интерфейса на экране устройства. Кнопка высотой в 44 точки будет иметь одинаковый размер как на экране старого iPhone 3G, так и на экране новой «шестерки» — примерно 7 миллиметров. Разница будет только в детализации: во втором случае кнопка будет отрисована с удвоенной четкостью (тот самый фактор масштабирования).

Изменение логической плотности экрана в точках меняет именно физический размер элементов интерфейса. Колебания в районе 150–170 dpi практически не будут заметны глазу. Если плотность станет больше 170 dpi, то элементы «сожмутся», кнопки станут маленькими, и в них попросту невозможно будет попасть пальцем. И наоборот, если уменьшить логическую плотность ниже 150 dpi, то весь интерфейс увеличится, как это было с дисплеями 10-дюймовых iPad, чья плотность составляет 132 dpi.

Подытожим: увеличение физической четкости экрана (ppi) имеет смысл только при сохранении приемлемого диапазона логической четкости (dpi), которая в идеале должна находиться в диапазоне 150–170 dpi. Только в таком случае элементы интерфейса системы и приложений сохранят свои привычные размеры.

Разрешение iPhone 6 Plus

Так какое же логическое разрешение может быть у дисплея 1080p с физической четкостью 401 dpi? Вот несколько возможных сценариев.

1. Если «Эпл» решила использовать фактор масштабирования 2×, то логический размер экрана будет 540×960 точек, что весьма неплохо для фаблета. Но проблема в том, что логическая плотность такого экрана — 200 dpi. Весь интерфейс сожмется до такой степени, что устройством будет невозможно пользоваться. Плохой выбор.

2. Попробуем теперь тройное масштабирование 3×. Оно приводит к экрану плотностью 134 dpi — многовато, как для айфона, это скорее «планшетное» значение. Но главная проблема в другом: такой экран будет иметь логические размеры всего лишь 360×640 точек, это меньше, чем у младшей модели iPhone 6 — 375×667 точек с масштабированием 2×. Это неприемлемо, ведь «Эпл» заявляет, что iPhone 6 Plus должен иметь больше места для контента по сравнению с iPhone 6.

3. Если ни 2×, ни 3× масштабирование не работает, то что тогда? Некоторые источники предполагают, что «Эпл» будет использовать дробное масштабирование вроде 2,5× — но этот вариант выглядит абсолютно чужеродным.

4. Небольшое исследование файлов Xcode выявляет истину. «Эпл» применяет теоретическое разрешение экрана в 1242×2208 пикселей с тройной четкостью, соответствующее логическим размерам 414×736 точек. А затем картинка сжимается на аппаратном уровне до масштабов дисплея 1080p. О таком не мог помыслить никто. Даже почтенный «эппловод» Джон Грубер, абсолютно точно угадавший разрешения дисплеев обоих айфонов.

Однако это именно то, что происходит на самом деле. Давайте на минуту забудем о панели 1080p, и представим, что «Эпл» на самом деле использовала для iPhone 6 Plus дисплей с физическим разрешением 1242×2208 пикселей и тройным масштабированием. В таком случае логический размер экрана составит 414×736 точек, а его плотность будет 154 dpi — всё выглядит идеально! Ну а об остальном позаботится аппаратное сжатие до меньшей, чем предполагалось, панели экрана. При этом картинка немного потеряет в деталях, примерно 13%.

Важно понимать, что аппаратное сжатие никак не повлияет на физические размеры элементов интерфейса на экране телефона. Полоска статуса высотой в 20 точек будет иметь практически одинаковую высоту и на iPhone 6, и на iPhone 6+. С точки зрения размеров интерфейса это гораздо более похоже на переход от iPhone 4 к iPhone 5, чем на разницу между iPad и iPad mini. Сжатие с масштабированием и уменьшение размеров это совсем не одно и то же! Наглядно эту разницу можно наблюдать на следующей картинке.

Какие минусы подобного подхода? Будет ли изображение заметно размытым? И эй, они ведь только что убили точное соответствие логических точек физическим пикселям! Прощайте, линии в 1 пиксель.

Ну, на самом деле всё может быть не так ужасно. Да, подобное решение это однозначный компромисс, и он разрушает идеальное вылизывание интерфейсов «до последнего пикселя». Но мы ведь говорим о тройном факторе масштабирования! Любые артефакты сжатия будут настолько малы, что невооруженным глазом их всё равно не заметить, так что вместо охоты на пиксели можно сосредоточиться на создании отличного дизайна. Наши любимые преданные клиенты «Эпл» вряд ли что-то заподозрят. Чистое волшебство!

Поговорим о потере точности

Теперь мы знаем, что волшебное сжатие трудится в поте лица, чтобы уместить все эти миллионы пикселей на маленьком пространстве. (Да это же Сингапур!) Какие-то пиксели неизбежно будут отрисовываться неточно, и самое время вспомнить о нашем друге Антиалиасинге. Главный вопрос: будут ли эти размытые линии заметны глазу?

Давайте представим, что мы рисуем черную линию толщиной в 1 пиксель на не-ретиновом экране с начальными координатами X=0; Y=0,25. В пиксельной решетке эта линия займет два ряда, каждый из которых будет отрисован разными оттенками серого. Если нарисовать такую же линию на «двойном» ретиновом экране, то она будет уже состоять из ½ полностью черного пикселя и ещё двух серых полупикселей. Теперь возьмем экран Retina HD с тройной четкостью — полностью черными будут уже ⅔ пикселей. На экранах с таким высоким разрешением размер пиксельной решетки — примерно 0,06 миллиметра. Мои глаза начинают косить при одной лишь мысли об этом.

Почему бы сразу не сделать по-человечески?

Но зачем использовать дисплей в 1080p вместо правильного? Почему бы сразу не сделать всё идеально, «Эпл», ну почему?

1. «Эпл» думает о деньгах. Экраны с разрешением 1080p более доступны, это более-менее стандартное разрешение. Компании необходимо поддерживать уровень маржи, а цена iPhone 6 Plus не слишком отличается от iPhone 6 — c бо́льшим экраном, бо́льшей батареей, лучшей камерой он дороже всего лишь на $100. А ведь в перспективе продажи iPhone 6 Plus отнимают долю рынка у iPad, и эти убытки тоже нужно покрывать.

2. Доступность нужных экранов. Вполне возможно, что поставщики просто не успели произвести нужное количество панелей, поставив под угрозу своевременный выход iPhone 6 Plus в свет.

На самом деле, подобное решение — очень умный шаг со стороны «Эпл», и вот почему:

  1. В будущем, в гипотетическом iPhone 7 Plus, «Эпл» сможет использовать оригинальное разрешение 1242×2208 без каких-либо проблем для разработчиков.
  2. Соблюден баланс между значением dpi и доступным размером экрана — 1080 физических пикселей, но в то же время значительно больше, чем просто 1080p.
  3. Не пострадает доходность.
  4. Использование доступных на рынке панелей позволит «Эпл» выпускать iPhone 6 Plus в достаточном количестве, чтобы удовлетворить спрос.

Но всё-таки жаль, что «Эпл» пошла на компромисс.

Краткий вывод: в условиях постоянной гонки «пиксельной» четкости экранов (ppi) главной проблемой является выбор правильного уровня масштабирования, чтобы сохранить логическое разрешение (dpi) в приемлемых рамках. Для iPhone 6 Plus «Эпл» выбрала точное тройное масштабирование 462 ppi/154 dpi картинки в 1242×2208 пикселей. Однако эта картинка аппаратно сжимается, чтобы уместиться в физическую панель 1080×1920.

Ещё более краткий вывод: на уровне железа «Эпл» облажалась. Мы не только не получили сапфирового экрана, но и разрешение панели хуже, чем предполагалось. Однако на программном уровне — респект за сохранение исходного разрешения.

Разработчикам: вообще не используйте разрешение 1080×1920 для дизайна под iPhone 6+. Используйте только 1242×2208. [brucewang]

www.iphones.ru

Обсуждение закрыто.